Universidad de Ciencias y Artes de Chiapas

INSTITUTO DE CIENCIAS BIOLÓGICAS

TESIS

ICTIOFAUNA DE SISTEMAS ESTUARINOS DEL PACÍFICO ORIENTAL COMO INSTRUMENTO DE DELIMITACIÓN ECORREGIONAL

QUE PARA OBTENER EL GRADO DE

MAESTRO EN CIENCIAS EN BIODIVERSIDAD Y CONSERVACIÓN DE ECOSISTEMAS TROPICALES

PRESENTA **César Daniel Gutiérrez Maza**

TUXTLA GUTIÉRREZ, CHIAPAS

OCTUBRE DE 2025

TESIS

Ictiofauna de sistemas estuarinos del Pacífico Oriental como instrumento de delimitación ecorregional

QUE PARA OBTENENER EL GRADO DE

MAESTRO EN CIENCIAS EN BIODIVERSIDAD Y CONSERVACIÓN DE ECOSISTEMAS TROPICALES

PRESENTA

César Daniel Gutiérrez Maza

Director

Dr. Emilio Ismael Romero Berny Centro de Investigaciones Costeras, Instituto de Ciencias Biológicas Universidad de Ciencias y Artes de Chiapas

Co-Director

Dr. Wilfredo Antonio Matamoros Ortega Instituto de Ciencias Biológicas Universidad de Ciencias y Artes de Chiapas

Asesor

Dr. Jesús Manuel López Vila El Colegio de la Frontera Sur-Unidad San Cristóbal

TUXTLA GUTIÉRREZ, CHIAPAS

OCTUBRE DE 2025

Universidad de Ciencias y Artes de Chiapas

SECRETARÍA ACADÉMICA DIRECCIÓN DE INVESTIGACIÓN Y POSGRADO

Tuxtia Gutièrrez, Chiapas a 13 de octubre de 2025 Oficio No. SA/D/P/1234/2025 Asunto: Autorización de Impresión de Tesis

C. César Daniel Gutiérrez Maza
CVU: 1273662
Candidato al Grado de Maestro en Ciencias en Biodiversidad y
Conservación de Ecosistemas Tropicales
Instituto de Ciencias Biológicas
UNICACH
Presente

Con fundamento en la opinión favorable emitida por escrito por la Comisión Revisora que analizó el trabajo terminal presentado por usted, denominado ICTIOFAUNA DE SISTEMAS ESTUARINOS DEL PACÍFICO ORIENTAL COMO INSTRUMENTO DE DELIMITACIÓN ECORREGIONAL y como Director de tesis el Dr. Emilio Ismael Romero Berny (CVU: 248336) quien avala el cumplimiento de los criterios metodológicos y de contenido; esta Dirección a mi cargo autoriza la impresión del documento en cita, para la defensa oral del mismo, en el examen que habrá de sustentar para obtener el Grado de Maestro en Ciencias en Biodiversidad y Conservación de Ecosistemas Tropicales.

Es imprescindible observar las características normativas que debe guardar el documento, así como entregar en esta Dirección una copia de la Constancia de Entrega de Documento Recepcional que expide el Centro Universitario de Información y Documentación (CUID) de esta Casa de estudios, en sustitución al ejemplar empastado.

"Por la Cultura de mi Raza"

Dra. Dulce Karof Kapairez López DIRECTORA

C.c.p. Dra. Alma Gabriola Vendugo Valdez, Directora del Instituto de Ciencias Biológicas, UNICACH, Para su conocimiento. Dr. José Antonio De Fuentes, Vicenta, Coordinador del Posgrado, Instituto de Ciencias Biológicas, UNICACH, Para su conocimiento. Anthino/minutario.
SPL/DEXILIgaţer

> 2025, Año de la mujer indigena Año de Rosario Castellanes

Ciudad Universitaria, libramiento norte poniente 1150, coi. Lajas Maciel C.P. 29035. Tuesta Gutiérnez, Chiapas, México invescigacionyposgrado@unicach.mv.

Remainter Neel Zentono

AGRADECIMIENTOS

Quiero agradecer de manera muy especial a mi madre Guadalupe Maza Gutiérrez por apoyarme siempre con mis estudios, mi madre siempre me ha estado apoyando en cada una de mis etapas como estudiante, en estos dos últimos años ella ha sido un apoyo incondicional para que yo pudiera concluir con esta etapa de mi carrera profesional.

A la Dra. Yessica Guadalupe Gutiérrez Maza por todo el apoyo incondicional que me ha brindado en todos los aspectos ya sea en las buenas y en las malas, te quiero y te admiro mucho hermana.

Al Dr. Emilio Ismael Romero Berny por su enorme paciencia en atenderme y enseñándome a lo largo de estos dos años, apoyándome en cada revisión no solo de mi trabajo de maestría sino también en mi tesis de licenciatura, así como en cada duda que me surgía, siempre estaré agradecido con usted y por brindarme su amistad y confianza.

Al Dr. Wilfredo Antonio Matamoros Ortega por brindarme su confianza desde hace más de ocho años para poder trabajar bajo su tutela, por sus enseñanzas, su asesoría, su apoyo y lo más importante hacerme saber que no existe cosas imposibles de lograr, muchas gracias Dr.

Al Dr. Jesús López Vila por brindarme su tiempo y apoyo en sus asesorías y comentarios no solo de este trabajo sino también de mi trabajo de tesis de licenciatura.

A mis amigos Sonia Hernández y Cristian Rico con quienes he tenido una gran relación de amistad compartiendo grandes pláticas ya sea a distancia o presencial, así mismo quiero agradecerles por apoyarme y tenerme paciencia en cada momento con mis análisis estadísticos, les envió un gran abrazo a ambos.

ÍNDICE GENERAL

ÍNDICE DE FIGURAS	III
ÍNDICE DE TABLAS	VIII
RESUMEN	IX
INTRODUCCIÓN GENERAL	11
CAPÍTULO I	23
Listado taxonómico de peces asociados a ambientes estuarinos en el Pacífico Orienta	ાી
INTRODUCCIÓN	24
MATERIALES Y MÉTODO	26
RECOPILACIÓN DE DATOS	26
GRUPOS REGIONALES, CATEGORÍA DE RIESGO Y ENDEMICIDAD	30
RESULTADOS	31
LISTADO TAXONÓMICO DE PECES EN AMBIENTES ESTUARINOS DEL PA ORIENTAL	
DISCUSIÓN	100
REFERENCIAS BIBLIOGRÁFICAS	102
CAPÍTULO II	105
Concordancia entre una bioregionalizacion marino-costera y una delimitación estuar en peces en el Pacífico Oriental	ina basada
INTRODUCCIÓN	106
MATERIALES Y MÉTODOS	108
ÁREA DE ESTUDIO	108
MÉTODO	111
ANÁLISIS DE INFORMACIÓN	111
ANÁLISIS DE SIMILITUD: CLASIFICACIÓN Y ORDENACIÓN	111
ANALISIS DE SIMILITUD PORCENTUAL	112
RELACIÓN DE LOS PATRONES BIOGEOGRÁFICOS CON PARÁMETROS AMBIENTALES	112
RESULTADOS	114
IDENTIFICACIÓN DE REGIONES ESTUARINAS	114
REGIONES ESTUARINAS	115
Grupo I (Pacífico Polar-Ártico Oriental)	115
Grupo II (Pacífico Frio-Cálido Nororiental)	117

Grupo III (Pacífico Oriental Tropical)	119
Grupo IV (Pacífico Frio-Cálido Sudoriental)	121
ANÁLISIS DE ORDENACIÓN BIDIMENSIONAL	123
PARÁMETROS AMBIENTALES	125
DISCUSIÓN	127
AGRUPACIONES BIOGEOGRÁFICAS ESTUARINAS DEL PACÍFICO ORIENTAL	127
VARIABILIDAD AMBIENTAL EN LAS AGRUPACIONES BIOGEOGRÁFICAS ESTUARINAS DEL PACÍFICO ORIENTAL	132
REFERENCIAS BIBLIOGRÁFICAS	137
CONCLUSIONES GENERALES	143
REFERENCIAS GENERALES	144
ANEXOS	149

ÍNDICE DE FIGURAS

Figura 1. Regionalizaciones biogeográficas marinas propuestas por Spalding et al. (2007). 1a.
Reinos biogeográficos marinos. 1b. Provincias biogeográficas marinas
Figura 2 . Ecorregiones marino-costeras propuestas por Spalding <i>et al.</i> (2007)
Figura 3 . Representación de los sectores de un cuerpo de agua estuarino (Whitfield y Elliott, 2011)
Figura 4. Representación de tipos de estuarios con cada uno de sus categorías fisiográficas (Whitfield y Elliott, 2011)
Figura 5. Esquemas de cada una de las categorías de las comunidades ictiofaunísticas de los ecosistemas estuarinos: 5A. rezagados marinos, 5B. migrantes marinos, 5C. Estuarinos residentes, 5D. Estuarinos migrantes, 5E. Anádromas, 5F. Semi-anadromas, 5G. Catádromas, 5H. Semi catádromas, 5I. Rezagados migrantes y 5J Dulceacuícolas migrantes (Elliott <i>et al.</i> , 2007)19
Figura. 6. Localidades estuarinas del Pacífico Oriental Ártico-Polar: Point Barrow (1), Wainwright (2), Point Lay (3), Point Hope (4), Kotlik Lagoon (5), Krusenstern Lagoon (6), Aukulak Lagoon (7), Kotzebue (8), Port Clarence (9), Safety Sound (10), Norton Sound (11), Delta River Yukon (12) y Kuskokwim Bay (13)
Figura 7. Localidades estuarinas del Pacífico Nororiental: Kachemak Bay (14), Glacier Bay (15), Fraser River (16), Grays Harbor (17), Willampa Bay (18), Columbia River (19), Nehalem Bay (20), Tillamook Bay (21), Netarts Bay (22), Siletz Bay (23), Yaquina Bay (24), Alsea Bay (25), Coos Bay (26), Lake Earl (27), Humboldt Bay (28), Tomales Bay (29), Estero Drakes (30), Bolinas Bay (31), San Francisco Bay (32), Elkhorn Slough (33), Morro Bay (34), Santa Mónica Lagoon (35), Alamitos Bay (36), Anaheim Bay (37), Newport Bay (38), Mission Bay (39), San Diego Bay (40), Punta Banda (41) y San Quintín (42).
Figura 8. Localidades estuarinas del Pacífico Oriental Tropical. Laguna Ojo de Liebre (43), Laguna San Ignacio (44), Bahía Magdalena (45), Bahía La Paz (46), Bahía Concepción (47), Laguna El Sargento (48), Laguna Santa Cruz (49), Estero El Soldado (50), Laguna Las Guásimas (51), Laguna Los Algodones (52), Bahía Lobos (53), Laguna Huizache-Caimanero (54), Laguna
Teacapan Agua Brava (55), Estero El Custodio (56), Laguna Agua Dulce El Ermitaño (57), Laguna
Barra de Navidad (58), Laguna Cuyutlán (59), Laguna Salinas del Padre (60), Barra de Nexpa (61),

Laguna Teolan (62), Laguna Mexcalhuacan (63), Barra de Pichi (64), Laguna El Potosi (65),
Laguna Mitla (66), Laguna Coyuca (67), Laguna Tres Palos (68), Laguna Chautengo (69), Laguna
Corralero Alotengo (70), Laguna Chacahua Pastoría (71), Laguna Superior Inferior (72), Huave
(73), Laguna Mar Muerto (74), Laguna La Joya Buenavista (75), Laguna Los Patos Solo Dios (76),
Laguna Carretas Pereyra (77), Laguna Chantuto Panzacola (78), Manchón-Guamuchal (79), Tulate
(80), Tecojate (81), Sipacate-Naranjo (82), Las lisas (83), Bahía de Jiquilisco (84), Estero Padre
Ramos (85), Estero Salinas Grandes (86), Estero Tamarindo (87), Nicoya (88), Estero Damas Palo
Seco (89), Estero Zancudo (90), Bahía de Málaga (91), Bahía de Buenaventura (92), Bahía de
Sanquianga (93), Chone (94), El Palmar (95), Tumbes (96) y Estero Verrila (97)29
Figura 9. Localidades estuarinas del Pacífico Sudoriental. Laguna Grande (98), Bahía de Corral
(99), Reloncavi (100), Canal Aysén (101), Katalalixar (102), Bernardo O Higgins (103) y
Alacalufes (104)30
Figura 10. Dendograma de formaciones de grupos ictiofaunísticos de estuarios del Pacífico
Oriental32
Figura 11. Clasificación de reinos para el Pacífico Oriental. Cada color y numeración representa
un reino diferente. 1. Ártico, 3. Pacífico Norte Templado, 8. Pacífico Tropical Oriental y 9.
América del Sur Templado
Figura 12. Clasificación de provincias biogeográficas para el Pacífico Oriental. Cada color y
numeración representa un reino diferente. 1. Ártico, 10. Pacífico Nororiental Templado Frío, 11.
Pacífico Nororiental Templado Cálido, 43. Pacífico Tropical Oriental, 44. Galápagos, 45. Pacífico
Sureste Templado Cálido, 46 . Juan Fernández y Desventuradas y 48 . Magallánico109
Figura 13. Clasificación de Ecorregiones propuestas por Spalding et al. (2007), para el Pacífico
Oriental, cada número es un código que representa a cada ecorregión: 13. Chukchi Sea, 14. Eastern
Bering Sea, 54. Gulf of Alaska, 55. North American Pacific Fijordland, 57. Oregon, Washington,
Vancouver Coast and Shelf, 58. Northern California, 59. Southern California Bight, 60. Cortezian,
61. Magdalena Transition, 164. Revillagigedos, 165. Clipperton, 166. Mexican Tropical Pacific,
167. Chiapas–Nicaragua, 168. Nicoya, 169. Cocos Islands, 170. Panama Bight, 171. Guayaquil,
172. Northern Galapagos Islands, 173. Eastern Galapagos Islands, 174. Western Galapagos Islands,
175. Central Peru, 176. Humboldtian, 177. Central Chile, 178. Araucanian, 179. Juan Fernández
and Desventuradas, 187. Channels and Fjords of Southern Chile y 188. Chiloense

Figura 14. Dendrograma simplificado basado en el método de grupo de pares no ponderados por
media aritmética (UPGMA) basado en el componente de recambio del índice de disimilitud de
Jaccard (Bjtu; Baselga, 2012) de 969 especies de peces estuarinos,104 localidades. Cada color
indica un grupo diferente
Figura. 15. Representación cartográfica de la agrupación de las ecorregiones propuestas por
Spalding et al. (2007), con información recabada de especies estuarinas del Pacífico Oriental, con
su respectiva especie indicadora para cada grupo formado; cada color designado es acorde a la
coloración de los resultados obtenidos del dendograma del UPGMA
Figura 16. Localidades estuarinas del grupo I: 13. Chukchi Sea. Point Barrow (1), Wainwright
(2), Point Lay (3), Point Hope (4), Kotlik Lagoon (5), Krusenstern Lagoon (6), Aukulak Lagoon
(7), Kotzebue (8); 14. Eastern Bering Sea (EBS). Port Clarence (9), Safety Sound (10), Norton
Sound (11), Delta River Yukon (12) y Kuskokwim Bay (13)
Figura 17. Riqueza de especies en las localidades estuarinas del grupo I. Pacífico Ártico-Polar
Oriental: (P.Bw) Point Barrow, (Wain) Wainwright, (PL) Point Lay, (PH) Point Hope, (Ko.L)
Kotlik Lagoon, (Kru.L) Krusenstern Lagoon, (Auk.L) Aukulak Lagoon, (Kotz) Kotzebue, (PC)
Port Clarence, (SS) Safety Sound, (NS) Norton Sound, (YDR) Yukon Delta River y (KB)
Kuskokwim Bay117
Figura 18. Localidades estuarinas del grupo II: 54. Gulf of Alaska (GA). Kachemak Bay (14); 55.
North American Pacific Fijordland (NAPF). Glacier Bay (15); 57. Oregon, Washington,
Vancouver Coast and Shelf (OWVCS). Fraser River (16), Grays Harbor (17), Willampa Bay
(18), Columbia River (19), Nehalem Bay (20), Tillamook Bay (21), Netarts Bay (22), Siletz Bay
(23), Yaquina Bay (24), Alsea Bay (25), Coos Bay (26), Lake Earl (27), Humboldt Bay (28); 58.
Northern California (NC). Tomales Bay (29), Estero Drakes (30), Bolinas Bay (31), San
Francisco Bay (32), Elkhorn Slough (33), Morro Bay (34); 59. Southern California Bight (SCB).
Santa Mónica Lagoon (35), Alamitos Bay (36), Anaheim Bay (37), Newport Bay (38), Mission
Bay (39), San Diego Bay (40), Punta Banda (41) y San Quintín (42)
Figura 19. Riqueza de especies en las localidades estuarinas del grupo II. Pacífico Templado-
Cálido Nororiental. (KB) Kachemak Bay, (GB) Glacier Bay, (FR) Fraser River, (GH) Grays
Harbor, (WB) Willampa Bay, (Col.R) Columbia River, (Neh) Nehalem Bay, (TB) Tillamook Bay,
(Net.B) Netarts Bay, (Sil.B) Siletz Bay, (YB) Yaquina Bay, (Als.B) Alsea Bay, (Co.B) Coos Bay,

(LE) Lake Earl, (Hum.B) Humboldt Bay, (Tom.B) Tomales Bay, (ED) Estero Drakes, (Bol.B) Bolinas Bay, (SF.B) San Francisco Bay, (Elk.S) Elkhorn Slough, (Morr.B) Morro Bay, (SM.L) Santa Mónica Lagoon, (Ala.B) Alamitos Bay, (Ana.B) Anaheim Bay, (New.B) Newport Bay, (Miss.B) Mission Bay, (SD.B) San Diego Bay, (Pun.Ba) Punta Banda y (SQ) San Quintín.....119 Figura 20. Localidades estuarinas del grupo III. Laguna Ojo de Liebre (43); 61. Magdalena Transition (M-T). Laguna San Ignacio (44), Bahía Magdalena (45); 60. Cortezian. Bahía La Paz (46), Bahía Concepción (47), Laguna El Sargento (48), Laguna Santa Cruz (49), Estero El Soldado (50), Laguna Las Guásimas (51), Laguna Los Algodones (52), Bahía Lobos (53), Laguna Huizache-Caimanero (54), Laguna Teacapan Agua Brava (55), Estero El Custodio (56); 166. Mexican Tropical Pacific (MTP). Laguna Agua Dulce El Ermitaño (57), Laguna Barra de Navidad (58), Laguna Cuyutlán (59), Laguna Salinas del Padre (60), Barra de Nexpa (61), Laguna Teolan (62), Laguna Mexcalhuacan (63), Barra de Pichi (64), Laguna El Potosí (65), Laguna Mitla (66), Laguna Coyuca (67), Laguna Tres Palos (68), Laguna Chautengo (69), Laguna Corralero Alotengo (70), Laguna Chacahua Pastoría (71); 167. Chiapas-Nicaragua (C-N). Laguna Superior Inferior (72), Huave (73), Laguna Mar Muerto (74), Laguna La Joya Buenavista (75), Laguna Los Patos Solo Dios (76), Laguna Carretas Pereyra (77), Laguna Chantuto Panzacola (78), Manchón-Guamuchal (79), Tulate (80), Tecojate (81), Sipacate-Naranjo (82), Las lisas (83), Bahía de Jiguilisco (84), Estero Padre Ramos (85), Estero Salinas Grandes (86); 168. Nicova. Estero Tamarindo (87), Nicoya (88), Estero Damas Palo Seco (89), Estero Zancudo (90); 170. Panama Bight (PB) Bahía de Málaga (91), Bahía de Buenaventura (92), Bahía de Sanquianga (93); 171. Guayaquil. Chone (94), El Palmar (95), Tumbes (96) y 175. Perú Central (PC) Estero Verrila

Figura 21. Riqueza de especies en las localidades estuarinas del grupo III. Pacífico Oriental Tropical. (OL) Laguna Ojo de Liebre, (San.Ig) Laguna San Ignacio, (Ba.Mag) Bahía Magdalena, (Ba.Paz) Bahía La Paz, (Ba.Con) Bahía Concepción, (El.Sar) Laguna El Sargento, (Sta.C) Laguna Santa Cruz, (El.Sol) Estero El Soldado, (Las.Gua) Laguna Las Guásimas, (Los.Alg) Laguna Los Algodones, (Ba.L) Bahía Lobos, (H.C) Laguna Huizache-Caimanero, (T.AB) Laguna Teacapan Agua Brava, (El.Cus) Estero El Custodio, (AgD.Er) Laguna Agua Dulce El Ermitaño, (Barr.Nav) Laguna Barra de Navidad, (Cuyt) Laguna Cuyutlán, (S.P) Laguna Salinas del Padre, (Barr.Nex) Barra de Nexpa, (Teo) Laguna Teolan, (Mexc) Laguna Mexcalhuacan, (Barr.Pi) Barra de Pichi, (El.Pot) Laguna El Potosí, (Mil) Laguna Mitla, (Coy) Laguna Coyuca, (T.Pa) Laguna

Tres Palos, (Chau) Laguna Chautengo, (Corr.Alo) Laguna Corralero Alotengo, (Cha.Pas) Laguna
Chacahua Pastoría, (Sup.Inf) Laguna Superior Inferior, Huave, (Mar.M) Laguna Mar Muerto,
(LaJ.Bu) Laguna La Joya Buenavista, (Los.PSD) Laguna Los Patos Solo Dios, (Carr.Per) Laguna
Carretas Pereyra, (Chan.Panz) Laguna Chantuto Panzacola, (Man-Guam) Manchón-Guamuchal,
(Tul) Tulate, (Tec) Tecojate, (Sip.Nar) Sipacate-Naranjo, (Las.Li) Las lisas, (Ba.Jiq) Bahía de
Jiquilisco, (P.Ra) Estero Padre Ramos, (Sa.Gra) Estero Salinas Grandes, (Tam) Estero
Tamarindo, (Nic) Nicoya, (DPS) Estero Damas Palo Seco, (Zan) Estero Zancudo, (Ba.Ma) Bahía
de Málaga, (Ba.Bue) Bahía de Buenaventura, (Ba.Sanq) Bahía de Sanquianga, Chone, (El.Pal) El
Palmar, (Tum) Tumbes y (EV) Estero Verrila
Figura 22. Localidades estuarinas del grupo IV: 176. Humboldtian. Laguna Grande (98); 178.
Araucanian. Bahía de Corral (99); 188. Chiloense. Reloncavi (100), Canal Aysén (101); 187.
Channels and Fjords of Southern Chile (CFSC). Katalalixar (102), Bernardo O Higgins (103) y
Alacalufes (104)
Figura 23. Riqueza de especies en las localidades estuarinas del grupo IV. Pacífico Templado-
Cálido Sudoriental. (L.Gr) Laguna Grande, (Ba.Corr) Bahia del Corral, (Rel) Reloncavi, (Ca.Ay)
Canal Aysén, (Kat) Katalalixar, (Ber O Higg) Bernardo O Higgins y (Alac) Alacalufes 123
Figura 24. Gráfico de escalamiento multidimensional no métrico (NMDS) asociado a la
información de las especies de peces estuarinas a nivel localidad para el Pacífico Oriental basado
con el índice de Jaccard. Cada color designado es acorde a la coloración de los resultados obtenidos
del dendograma del UPGMA125
Figura 25. Gráfico del análisis de redundancias basado en distancias dbRDA para variables
ambientales seleccionadas para el Pacífico Oriental. Cada punto es una ecorregión evaluada, la
coloración de cada punto va en relación con los resultados obtenidos en el UPGMA126
Figura 26. Distribución geográfica de especies endémicas estuarinas del Pacífico Oriental 151
Figura 27. Distribución geográfica de las especies dentro de los Appendices CITES del Pacífico
Oriental 152

ÍNDICE DE TABLAS

Tabla 1. Resultados del modelo lineal basado en distancias para identificar al conjunto de variables
ambientales que mejor explican la variabilidad de los metaensamblajes de peces en grupos del
Pacífico Oriental. Significancia de cada variable testada de manera individual
Tabla 2. Clasificación de especies que se encuentran dentro de una categoría de riesgo según la
IUCN
Tabla 3. Especies endémicas recolectadas en las localidades estuarinas a lo largo del Pacífico
Oriental
Tabla 4. Especies endémicas del Pacífico Oriental con alguna categoría de riesgo según la IUCN.
Tabla 5. Lista de especies y numero de apéndice bajo la clasificación de CITES
Tabla 6. Especies dulceacuícolas-salobres dentro de las localidades estuarinas del Pacífico
Oriental
Tabla 7. Especies dulceacuícolas dentro de las localidades estuarinas del Pacífico Oriental153
Tabla 8. Especies dulceacuícolas-salobres-marinas dentro de las localidades estuarinas del
Pacífico Oriental
Tabla 9. Especies salobres-marinas dentro de las localidades estuarinas del Pacífico Oriental. 158
Tabla 10. Especies marinas dentro de las localidades estuarinas del Pacífico Oriental161
Tabla 11. Localidades estuarinas del Pacífico Polar-Ártico Oriental (Grupo I). 178
Tabla 12. Localidades estuarinas del Pacífico Frio-Cálido Nororiental (Grupo II). 178
Tabla 13. Localidades estuarinas del Pacífico Oriental Tropical (Grupo III). 179
Tabla 14. Localidades estuarinas del Pacífico Frio-Cálido Sudoriental (Grupo IV). 181

RESUMEN

CAPÍTULO I

En biología, la taxonomía se relaciona con la teoría y la práctica de describir la diversidad. Su propósito principal es erigir una clasificación adecuada para dicha diversidad (Helfman et al., 2009; Nelson et al., 2016), esto incluye la denominación de especies no descritas y la creación de claves de identificación, así como de reglas de nomenclatura que gobiernan el uso de nombres taxonómicos (Helfman et al., 2009). El Pacífico Oriental es una de las grandes regiones zoogeográficas marino-costeras del mundo, abarcando desde el mar de Bering (Alaska) hasta punta de Tierra de fuego (Chile). Los ecosistemas estuarinos son cuerpos de agua costeros donde confluyen masas de agua tanto de origen marino como continental. Pueden presentar diferentes tamaños y morfologías, desarrollando geoformas tales como lagunas, barras, deltas y fiordos (López-Herrera et al., 2021). La comunidad íctica estuarina está compuesta por especies tanto dulceacuícolas (peces secundarios) como marinas (eurihalinas y estenohalinas) y estuarinos residentes, quienes utilizan estos ambientes como zonas de descanso, crianza, reproducción y alimentación (López-Herrera et al., 2021). Los estudios sobre riqueza y composición íctica en los sistemas estuarinos son relativamente escasos; algunos han sido más estudiados que otros, pero existen notables vacíos de información taxonómica y ecológica. El objetivo de este capítulo fue generar un listado taxonómico de la ictiofauna estuarina a lo largo del Pacífico Oriental identificando las especies endémicas, así como las que presentan una categoría de riesgo según la lista roja de la UICN (Unión Internacional para la Conservación de la Naturaleza) y el appendice CITES (Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres) al que pertenece. Se recopiló un listado taxonómico integrado por un total de 970 especies válidas, de las cuales están dentro de 5 clases, 51 órdenes, 46 subórdenes, 193 familias, 103 subfamilias y 509 géneros. Dentro del listado se encontraron 78 especies dentro de una categoría de riesgo según la lista roja de la IUCN, a su vez, se encontraron cuatro especies dentro de los appendices de CITES y 11 especies endémicas.

Palabras Clave: Listado taxonómico, Pacífico Oriental, ecosistemas estuarinos e ictiofauna estuarina.

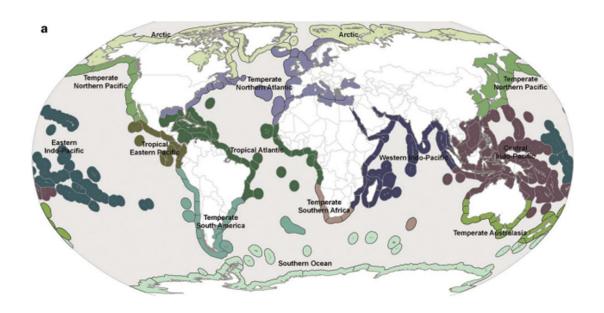
CAPÍTULO II

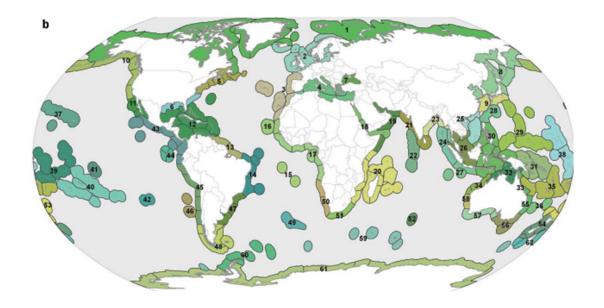
La biogeografía es la rama de la biología que estudia los patrones de distribución de los seres vivos en la tierra y los procesos históricos y ecológicos que han producido estos patrones. Uno de sus objetivos principales es identificar las entidades naturales que dividen la superficie terrestre. En este contexto, el desarrollo de propuestas de regionalización representa un desafío tanto conceptual como metodológico. Esta tarea implica la clasificación de unidades espaciales con base en las biotas, considerando los complejos procesos ecológicos e históricos que las sustentan, los cuales reflejan la historia de la Tierra (Morrone y Escalante, 2016). Los ecosistemas estuarinos son cuerpos de agua costeros donde confluyen masas de agua tanto de origen marino como continental. Estos ambientes presentan una variabilidad espacio-temporal muy alta, especialmente en factores como la temperatura, la salinidad, el oxígeno, las corrientes de agua y profundidad. Así mismo pueden presentar diferentes tamaños y morfologías, desarrollando geoformas tales como lagunas, barras, deltas y fiordos (López-Herrera et al., 2021). La comunidad íctica estuarina está compuesta por especies tanto dulceacuícolas (peces secundarios) como marinas (eurihalinas y estenohalinas) y estuarinos residentes, quienes utilizan estos ambientes como zonas de descanso, crianza, reproducción y alimentación (López-Herrera et al., 2021). El Pacífico Oriental ha sido, en la mayoría de las clasificaciones, subrepresentado debido a un limitado número de localidades incluidas. El objetivo principal de este capítulo fue determinar los patrones biogeográficos de peces asociados a ambientes estuarinos del Pacífico Oriental y determinar su concordancia con las unidades ecorregionales para esta región. Para esto, se usó el método de grupo de pares no ponderados por media aritmética (UPGMA por sus siglas en inglés) (Kreft y Jetz, 2010; White y Garmacy, 2015), así como de la función de penalización de Kelley-Gadner-Sutcliff (KGS) para determinar el número de grupos, sobre todas las especies estuarinas registradas en 104 localidades a lo largo de la costa del Pacífico Oriental. Se determinaron la formación de cuatro grupos: I-Pacífico Polar-Ártico Oriental, II-Pacífico Frío-Cálido Nororiental, III-Pacífico Oriental Tropical, y IV-Pacífico Frío-Cálido Suroriental. La clasificación y ordenación de los grupos reflejaron un resultando estadísticamente significativo.

Palabras claves: Pacífico Oriental, ecosistemas estuarinos, ictiofauna estuarina y regiones biogeográficas.

INTRODUCCIÓN GENERAL

La biogeografía es la rama de la biología que estudia los patrones de distribución de los seres vivos en la tierra y los procesos históricos y ecológicos que han producido estos patrones. Uno de sus objetivos principales es identificar las entidades naturales que dividen la superficie terrestre, como las regiones de aguas dulces y marinas. En este contexto, el desarrollo de propuestas de regionalización representa un desafío tanto conceptual como metodológico. Esta tarea implica la clasificación de unidades espaciales con base en las biotas, considerando los complejos procesos ecológicos e históricos que las sustentan, los cuales reflejan la historia de la Tierra (Morrone y Escalante, 2016).


Una región biogeográfica representa la manera en que las especies se agrupan espacialmente, constituyendo unidades clave para la conservación, la biogeografía histórica, la ecología y la evolución. Estas regiones poseen conjuntos biológicos únicos, distintos de los de áreas adyacentes, ya que han evolucionado de forma independiente y están separados por barreras naturales (Sanmartín y Ronquist, 2002; Morrone, 2009). Conceptualmente, la organización de estas regiones es similar a la clasificación jerárquica de los seres vivos, basada en un análisis de sus semejanzas y diferencias (Zunino y Zullini, 2016).


La regionalización biogeográfica se define como un sistema jerárquico que permite clasificar áreas geográficas según su biota (Escalante *et al.*, 2009). En esta jerarquía, los niveles más altos corresponden a los reinos, seguidos por regiones, dominios, provincias y distritos, siendo este último el nivel más detallado. Además, se pueden reconocer categorías intermedias, como subregiones y subdominios (Morrone, 2011). Los esquemas tradicionales de regionalización biogeográfica han empleado diversos criterios, incluidos aspectos faunísticos, florísticos, ecológicos, fisiográficos y paleontológicos, muchos de los cuales se basan únicamente en las similitudes observadas (Morrone, 2011; Escalante *et al.*, 2009).

Los ecosistemas marinos se caracterizan por ser variables y complejos, poco susceptibles a la generalización y en muchos casos difíciles de delimitar espacialmente (Palacios-Mejía, 2006). Veron *et al.* (2009) revisaron los primeros intentos en regionalizar la vida marina, citando como

los trabajos más relevantes a los de James Dana (1853), Edward Forbes (1856) y Charles Darwin (1859). Ekman (1953), fue el primero en definir las regiones biogeográficas del medio marino, basándose en características zoogeográficas, barreras ambientales y niveles de endemismo. Posteriormente Briggs (1974, 1995), trabajando con conceptos similares, estableció un sistema de clasificación de provincias costeras y de la plataforma continental definidas por su grado de endemismo del 10%. Años más tarde Briggs y Bowen (2012), revisaron esta misma clasificación al considerar los avances recientes en nuestro conocimiento de la distribución geográfica de las especies y sus relaciones filogenéticas.

Spalding et al. (2007), realizaron una revisión exhaustiva de 230 publicaciones de revistas científicas, reportes tanto de organizaciones gubernamentales, así como no gubernamentales, utilizaron cartografía en versiones digitales de regionalizaciones biogeográficas ya existentes, así como la consultoría de más de 40 expertos que les brindaron asesoramiento adicional. Como resultado obtuvieron la definición de 12 reinos (Figura 1a), 62 provincias (Figura 1b) y 232 ecorregiones (Figura 2) para ambientes marino-costeros a nivel mundial. En este trabajo no se incluyen los entornos pelágicos o bentónicos profundos, debido al requerimiento de un mayor análisis y desarrollo.

Figura 1. Regionalizaciones biogeográficas marinas propuestas por Spalding *et al.* (2007). 1a. Reinos biogeográficos marinos. 1b. Provincias biogeográficas marinas.

Así mismo, Spalding *et al.* (2007), definen a cada nivel jerárquico de las unidades biogeográficas marino-costeras de la siguiente manera:

Reinos. Regiones muy extensas de océano costero, bentónico o pelágico en las que las biotas son coherentes internamente en niveles taxonómicos superiores, como resultado de una historia evolutiva compartida y única. Los reinos tienen altos niveles de endemismo, incluidos taxones únicos a nivel genérico y familiar en algunos grupos. Los factores que impulsan el desarrollo de estas biotas únicas incluyen la temperatura del agua, el aislamiento histórico y a gran escala y la proximidad de los bentos.

Provincias. Grandes áreas definidas por la presencia de biotas distintas que tienen al menos cierta cohesión a lo largo de marcos temporales evolutivos. Las provincias tendrán cierto nivel de endemismo, principalmente a nivel de especie. Aunque el aislamiento histórico desempeñará un papel, muchas de estas biotas distintas han surgido como resultado de características abióticas distintivas que delimitan sus límites. Estas pueden incluir características geomorfológicas (sistemas de islas y plataformas aislados, mares semicerrados); características hidrográficas (corrientes,

surgencias, dinámica del hielo); o influencias geoquímicas (elementos de escala más amplia de suministro de nutrientes y salinidad).

Ecorregiones. Áreas con una composición de especies relativamente homogénea, claramente diferenciadas de los sistemas adyacentes. Es probable que la composición de especies esté determinada por el predominio de un pequeño número de ecosistemas y/o un conjunto distinto de características oceanográficas o topográficas. Los agentes forzantes biogeográficos dominantes que definen las ecorregiones varían de un lugar a otro, pero pueden incluir aislamiento, surgencia, aportes de nutrientes, entrada de agua dulce, regímenes de temperatura, regímenes de hielo, exposición, sedimentos, corrientes y complejidad batimétrica o costera.

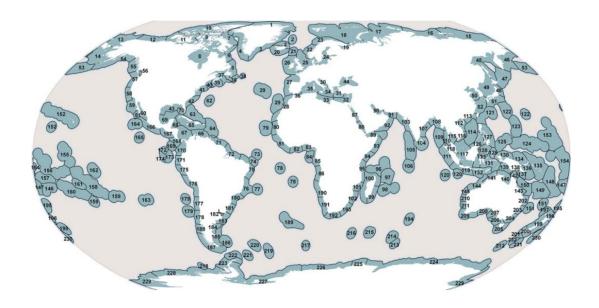


Figura 2. Ecorregiones marino-costeras propuestas por Spalding et al. (2007).

Por otro lado, los ecosistemas estuarinos son catalogados como entornos altamente dinámicos, los cuales presentan una estructura tanto física, como química y biológica caracterizada por su alta variabilidad espacial y temporal (Mateus *et al.*, 2008), estos ambientes suelen presentar una alta productividad y diversidad de hábitats, los cuales los convierten en puntos críticos de la biodiversidad (Day *et al.*, 1989). Estos entornos están sujetos a múltiples variaciones continuas tales como las ráfagas de viento, la irradiación solar, las precipitaciones, los niveles de agua, los regímenes mareales y la escorrentía fluvial (Mateus *et al.*, 2008). El origen de estos hábitats se dio por medio de accidentes costeros catalogados geológicamente como efímeros, estos accidentes

formaron valles fluviales los cuales se erosionaron y posteriormente se inundaron debido a las desglaciaciones ocurridas durante la época del Pleistoceno, época en donde presentó en sus periodos cálidos interglaciares la proliferación de estos ecosistemas (Elliott y Whitfield, 2011). La formación de los hábitats estuarinos contemporáneos tuvo lugar por medio de las inundaciones marinas ocurridas durante la era de la Transgresión Marina del Holoceno hace aproximadamente entre 6,000 a 11,000 años (Baum *et al.*, 2024).

En las últimas décadas, numerosos investigadores han publicado diferentes tipos de definiciones de estuarios, se han tomado como punto de partida aspectos biológicos, hidrológicos, físicoquímicos y sociales (Piccolo y Perillo, 1997). La definición propuesta por Perillo (1995), ha sido ampliamente aplicada debido a su utilidad para interpretar investigaciones tanto hidrológicas como biológicas. Esta definición describe a los ecosistemas estuarinos de la siguiente manera "un estuario es un cuerpo de agua costero semicerrado que se extiende hasta el límite efectivo de la influencia de la marea, dentro del cual el agua salada que ingresa por una o más conexiones libres con el mar abierto, o cualquier otro cuerpo de agua salino, es diluida significativamente con agua dulce derivada del drenaje terrestre y puede sustentar especies biológicas eurihalinas ya sea por una parte o la totalidad de su ciclo de vida".

Otra importante definición de estuarios fue propuesta por Elliott y Whitfield (2011), desde una perspectiva ecológica y de manejo el cual menciona lo siguiente "una masa de agua costera semicerrada, conectada al mar de forma permanente o periódica, con una salinidad diferente a la del océano abierto adyacente debido a los aportes de agua dulce, e incluye una biota característica". La comunidad científica en la actualidad ha empleado el termino de "Aguas de transición" como un término científico para referirse a los ecosistemas estuarinos en general. Este término propuesto por la Directiva Marco Europea del Agua lo define como "Las masas de agua superficial en las proximidades de las desembocaduras de los ríos que son parcialmente salinas en su carácter como resultado de su proximidad a las aguas costeras, pero que están sustancialmente influenciadas por flujos de agua dulce" (Facca, 2020).

De acuerdo con el grado de dilución salina y la dinámica de las mareas se ha establecido la estructura de estos cuerpos de agua costeros, los cuales están divididos en tres sectores los cuales se describen a continuación: Zona Inferior o marina, en este sector las salinidades son máximas a lo largo de la columna de agua, debido a que corresponde a la zona que tiene contacto directo con el mar. Esta zona presenta una granulometría más gruesa, producto de la influencia de las corrientes mariales y al aporte de sedimentos desde la plataforma y la deriva continental. Dependiendo de las condiciones hidrodinámicas la entrada de agua de estos ecosistemas puede ser abierta o semicerrada debido a los deltas mareales, estos pueden ser de dos formas de flujo (cuando se forman al interior de la boca barra) o de reflujo (hacia el exterior) (Piccolo y Perillo, 1997); Zona Media, representa el lugar de mezcla entre el agua dulce (continental) y el agua oceánica (salada), esta zona persiste una continua búsqueda de equilibrio entre la estratificación de ambas masas de agua y la turbulencia inducida por las mareas. A su vez, el dominio de cada masa de agua determinara la distribución de las especies biológicas y el trasporte de sedimento en suspensión. Así mismo, esta zona de contacto suele actuar como un captador de sedimentos, lo que origina a que este sector sea el lugar en donde se dé lugar a las máximas concentraciones de turbidez (Piccolo y Perillo, 1997) y por último tenemos la **Zona Superior** o fluvial el cual al presentar las más bajas salinidades oceánicas esta zona está ampliamente dominada por los regímenes mariales (Gregg et al., 2013) (Figura 3).

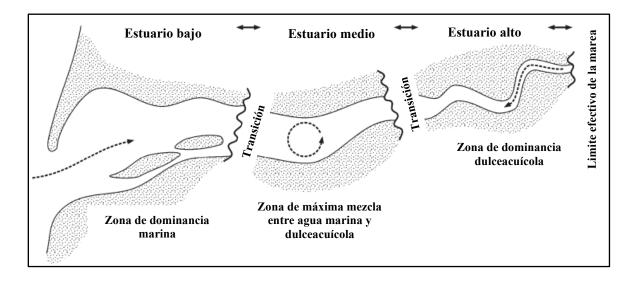


Figura 3. Representación de los sectores de un cuerpo de agua estuarino (Whitfield y Elliott, 2011).

A lo largo de los de años, diversos investigadores han propuesto diferentes tipos de clasificaciones para los ecosistemas estuarinos, los cuáles se han basado bajo criterios según a su balance y circulación hídrica (Pritchard 1952; 1967), su estructuración salina y geomorfología (Dyer, 1972), sus rangos mariales (Hayes, 1975), sedimentología (Rusnak, 1967), morfogenética (Perillo, 1995), impacto humano (Edgar *et al.*, 2000) y conservación (Hume *et al.*, 2007). Otros autores han preferido adaptador un enfoque más multidisciplinario, tal como la clasificación de Ketchum (1983), el cuál basó su clasificación estuarina según la morfología, su distribución salina y su circulación hídrica y Whitfield (1992), en donde tomó como criterio la morfometría, los regímenes de salinidad, la dinámica de desembocadura y procesos hidrodinámicos para clasificar los estuarios del sureste africano.

En Oceanía Ward et al. (1998), desarrollaron sus propias definiciones de costas y estuarios aplicados para Australia para posteriormente realizar una clasificación ecosistemas estuarinos australianos, el cual incluyeron elementos tales como el flujo de agua, tipos de sustratos, hábitats, especies y biodiversidad. A principios del nuevo milenio, Edgar et al. (2000), tomaron como referencia el trabajo Ward et al. (1998), para adaptar su clasificación sobre los cuerpos de agua estuarinos de Tasmania, en dónde utilizaron criterios tales como atributos físicos, ecológicos y demográficos. Un año más tarde, Roy et al. (2001), clasificaron los estuarios australianos bajo criterios geológicos, calidad de agua y factores ambientales. En Sudamérica Harrison y Whitfield (2006), realizaron una clasificación sobre el estado de salud de los estuarios sudamericanos a base de la captura de las comunidades ictiológicas estuarinas utilizando análisis estadísticos multivariados.

Para este estudio se tomó como referencia la clasificación propuesta por Whitfield y Elliott (2011), en donde tomaron como punto de partida la geomorfología e hidrología de los ecosistemas estuarinos, estos autores dividen a los estuarios a nivel mundial en tres categorías fisiográficas principales los cuales lo describen de la siguiente manera: **Ecosistemas estuarinos de valle**, estos cuerpos de agua costeros los ubicamos en los valles fluviales inundados, los cuales pueden constar de un solo canal de entrada, a estos se les conoce como estuarios simples. Cuando en estos valles se presenta un incremento en sus inundaciones da como resultado numerosos afluentes en sus tramos inferiores, lo que da lugar a un estuario irregular con numerosos canales. Sus regímenes

salinos son comúnmente estuarinos y rara vez hiperhalino. Bajo esta categoría podemos encontrar a las bahías estuarinas, estuarios de origen tectónico, fiordos y fiardos; **Ecosistemas de lagos y lagunas estuarinas**. Estos suelen ubicarse en las llanuras costeras, presentando un alto aporte de sedimentación marina, el cual da lugar a playas de barrera, dunas o barras. Los regímenes salinos son predominantemente estuarinos, pero puede variar de oligohalino a hiperhalino, este último se registra a menudo en zonas semiáridas-áridas. Bajo esta categoría encontramos a los estuarios ciegos, barras estuarinas, estuarios de llanura costera y ensenadas estuarinas; **Ecosistemas de desembocaduras de ríos.** Estos cuerpos de agua estuarinos están completamente dominados por influencias fluviales, los cuales pueden adoptar de una a múltiples desembocaduras, presentado salinidades predominantemente oligohalinas, condiciones que pueden variar de ribereñas a estuarinas (Figura 4).

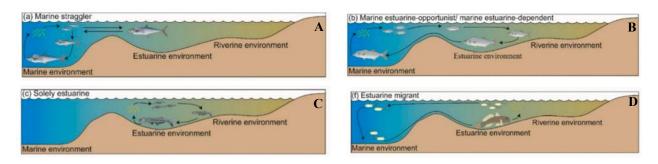



Figura 4. Representación de tipos de estuarios con cada uno de sus categorías fisiográficas (Whitfield y Elliott, 2011).

Los peces son el grupo biológico más visible y económicamente más importante en los ecosistemas estuarinos, su alto índice de biomasa se explica en parte por la alta productividad primaria y sus cortas redes tróficas, a su vez, la alta abundancia y diversidad ictiológica en estas zonas se relaciona con su gran variabilidad en las condiciones ecológicas de estos ecosistemas y la abundancia y diversidad de recursos disponibles, como alimento, zonas de refugio y áreas de desove (Carrasco Navas-Parejo *et al.*, 2024).

De acuerdo con Elliott *et al.* (2007), la ictiofauna estuarina se clasifica de la siguiente manera: **Rezagados marinos**. Son las especies que desovan en el mar y que, por lo general, ingresan a los estuarios en pequeñas cantidades, por lo general se encuentran en los tramos inferiores donde la salinidad esta mayormente concentrada (Figura 5A); **Migrantes marinos**. Igual que la categoría anterior estas especies desovan en el mar, pero a menudo entran a los estuarios en su etapa juvenil en grandes cantidades, algunas de estas especies son altamente eurihalinas las cuales se desplazan por todo el estuario. Esta categoría se divide en dos grupos: los estuarios marinos oportunistas quienes utilizan en diversos grados las aguas marinas cercanas a los estuarios como hábitat alternativo y los estuarinos marinos dependientes los cuales utilizan a los estuarios como hábitats de protección en su etapa juvenil (Figura 5B); **Especies estuarinas.** Se dividen en residentes estuarinos, quienes son las especies capaces de completar todo su ciclo de vida dentro de estos ambientes (Figura 5C) y los migrantes estuarinos, estas especies pasan en su etapa larvaria fuera de estos ambientes y regresan en su etapa adulta (Figura 5D).

Figura 5. Esquemas de cada una de las categorías de las comunidades ictiofaunísticas de los ecosistemas estuarinos: **5A.** rezagados marinos, **5B.** migrantes marinos, **5C.** Estuarinos residentes, **5D.** Estuarinos migrantes, **5E.** Anádromas, **5F.** Semi-anadromas, **5G.** Catádromas, **5H.** Semi catádromas, **5I.** Rezagados migrantes y **5J** Dulceacuícolas migrantes (Elliott *et al.*, 2007).

Especies anádromas. Estas desovan sus crías en las zonas menos salinas de los estuarios, posteriormente en su etapa juvenil se desplazan a las zonas medias y al final de su etapa de crecimiento se desplazan fuera de estos ambientes (Figura 5E); Semi-anadromas. presentan un recorrido de desove que va desde el mar hasta la parte superior del estuario (Figura 5F); Catádromas. estos peces pasan toda su etapa de vida en las zonas altas de los estuarios, pero migran hacia el mar en su etapa de desove (Figura 5G); Semi-catadromas. Estas especies desovan dentro de estos ecosistemas y por lo general se mantienen dentro de las zonas medias y altas de los estuarios durante el resto de su vida (Figura 5H); Anfidromas, estos peces se desplazan a lo largo de todo el cuerpo de agua estuarino, su desplazamiento en ninguna dirección está relacionada con la etapa de reproducción; Dulceacuícolas migrantes. Son peces continentales que pueden soportar salinidades por encima de lo habitual, son comúnmente conocidos como especies dulceacuícolas secundarias (Figura 5J) y finalmente tenemos a los rezagados de agua dulce los cuales los podemos encontrar en pequeñas cantidades en las zonas superiores de los estuarios (Elliott *et al.*, 2007) (Figura 5I).

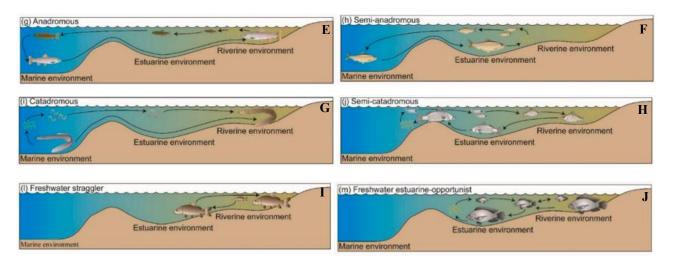


Figura 5. Continua.

En los últimos años se han realizado varios estudios que han examinado los patrones biogeográficos de los peces estuarinos a tanto a escala regional como global. Entre los estudios regionales para el continente americano tenemos la obra de Horn y Allen (1976), quienes analizaron las distribuciones de las especies estuarinas-costeras a lo largo de la costa del estado de California (EUA), posteriormente Horn *et al.* (2006), actualizaron las distribuciones de las especies

anteriormente reportadas y añadieron registros de nuevas especies. Nordlie (2003), analizó la composición y distribución de la ictiofauna estuarina de 20 localidades entre estuarios y marismas a lo largo de la costa este de América de Norte desde el sur de Texas (EUA) en el oeste hasta y hasta la Isla del Príncipe Eduardo en el este y las bahías James y Hudson en el norte (Canadá).

Entre los estudios más recientes se encuentra Vilar *et al.* (2013), quienes identificaron los patrones biogeográficos de la composición de la ictiofauna estuarina a lo largo de toda la costa de Brasil, así mismo compararon y analizaron la estructura de la composición de las especies encontradas a diferentes escalas tanto locales como regionales y mediante variables ambientales y espaciales. Vilar *et al.* (2017), cartografiaron la riqueza de las especies endémicas y de las distribuciones de las especies de peces estuarinas e identificaron las regiones más importantes de conservación largo de la costa brasileña. Por último, tenemos la obra de López-Herrara *et al.* (2021), en donde los autores utilizaron la ictiofauna como herramienta para determinar la regionalización de la ictiofauna lagunar-estuarina del sureste del Golfo de México, regionalización que dio como resultado la división de tres provincias biogeográficas (Provincia Caroliniana, Provincia Caribeña y Provincia del Caribe).

En Oceanía, Edgar *et al.* (1999) reportaron la presencia de 101 especies de peces estuarinos en 75 estuarios en la isla de Tasmania, Australia, así mismo analizaron los patrones de la composición íctica mediante varios parámetros ambientales. Posteriormente, Sheaves y Johnston (2009), comprobaron la variabilidad en la estructura de la ictiofauna estuarina centrándose en mecanismos del paisaje a escala de estuario evaluando un total de 21 estuarios a lo largo de la costa norte de Queensland, Australia. Años más tarde Francis *et al.* (2011), determinaron la composición, la modelación, así como la predicción de la riqueza, ocurrencia y abundancia de las especies de peces estuarinos para 69 estuarios a lo largo de tres islas principales de Nueva Zelanda.

En el continente africano tenemos las obras de Harrison (2002), en donde examinó y ajustó las delimitaciones de las distribuciones de los peces estuarinos sudafricanos. Dos años más tarde Whitfield (2005), comparo la riqueza y la diversidad a nivel de familia y especie entre las diferentes regiones biogeográficas de los peces estuarinos en la zona del África subsahariana, además de analizar las principales variables ambientales que influyen en su distribución. Para Europa tenemos

el estudio de Connor *et al.* (2019), quienes proporcionan una descripción de la ictiofauna presente en los estuarios irlandeses, a su vez analizaron las relaciones entre la riqueza y la abundancia relativa los grupos funcionales y las características físicas de las localidades estuarinas. Mientras que en el continente asiático tenemos el estudio Kume *et al.* (2021), quienes determinaron mediante factores tales como la latitud, la temperatura del agua y las tasas de artificialización la estructuración de las comunidades de peces estuarinos y costeros de Japón.

Los estudios globales de las comunidades de peces estuarinos los encontramos en las investigaciones de Vasconcelos *et al.* (2015) y (2017), Henríquez *et al.* (2017a) - (2017b) y Harrson y Whitfield (2022). Sin embargo, estos estudios podrían estar subrepresentados para los ecosistemas estuarinos del Pacífico Oriental debido a un limitado número de localidades incorporadas. Con base en lo anterior, en este estudio se plantearon las siguientes preguntas: a) ¿Cuáles son los patrones biogeográficos de los ambientes estuarinos del Pacífico Oriental basados en sus metaensamblajes de peces?; b) ¿Qué nivel de concordancia existe entre los patrones biogeográficos encontrados para ambientes estuarinos y las ecorregiones marino-costeras?; c) ¿Cuál es el grado de correlación entre los patrones biogeográficos estuarinos y 13 variables ambientales predictoras? El objetivo principal de este estudio fue determinar los patrones biogeográficos de peces asociados a ambientes estuarinos del Pacífico Oriental y determinar su concordancia con las unidades ecorregionales para esta región, a partir de la generación una lista taxonómica exhaustiva recopilada de un mayor número de localidades. Para llevarlo a cabo la tesis se estructuró en dos capítulos:

- Capítulo 1. Listado taxonómico de peces asociados a ambientes estuarinos en el Pacífico Oriental.
- Capítulo 2. Concordancia entre una bioregionalizacion marino-costera y una delimitación estuarina basada en peces en el Pacífico Oriental.

CAPÍTULO I

Listado taxonómico de peces asociados a ambientes estuarinos en el Pacífico Oriental

INTRODUCCIÓN

En biología, la taxonomía se relaciona con la teoría y la práctica de describir la diversidad. Su propósito principal es erigir una clasificación adecuada para dicha diversidad (Helfman *et al.*, 2009; Nelson *et al.*, 2016), esto incluye la denominación de especies no descritas y la creación de claves de identificación, así como de reglas de nomenclatura que gobiernan el uso de nombres taxonómicos (Helfman *et al.*, 2009). La clasificación taxonómica es el proceso por el cual los elementos se agrupan en clases o en categorías (Thompson, 2003; Nelson *et al.*, 2016) con base en caracteres compartidos y la disposición de dichas categorías. Esta se sintetiza en un conjunto de hipótesis anidadas o jerárquicas: hipótesis de caracteres, grupos y relaciones entre los grupos (Thompson, 2003). El propósito, al momento de construir una clasificación de un grupo de organismos, es reflejar lo que se considera que son las relaciones evolutivas de los distintos taxones en un sistema jerárquico de grupos nombrados (Nelson *et al.*, 2016).

El Pacífico Oriental es una de las grandes regiones zoogeográficas marino-costeras del mundo, abarcando desde el mar de Bering (Alaska) hasta punta de Tierra de fuego (Chile). Presenta una plataforma costera bastante estrecha, la cual se extiende hasta profundidades de 200 metros. Esta región se clasifica en tres grandes subregiones las cuales están relacionas con los patrones climáticos y las corrientes oceánicas y costeras que prevalecen en esta zona (Vega *et al.*, 2012).

La subregión marina del Pacífico Nororiental se extiende desde el Golfo de Alaska hasta el norte de la península de Baja California, se caracteriza por ser una zona donde la precipitación excede la evaporación, en el cual presenta una tasa de precipitación oceánica que es superior a un metro por año (Royer *et al.*, 2001). Además, las masas de aire han sido reconocidas desde hace mucho tiempo como fuentes importantes de humedad a lo largo de la costa oriental de América del Norte (Cayan y Peterson, 1989). El sistema de la Corriente de California domina a lo largo de la costa nororiental del Pacífico, este sistema presenta una fuerte variación interanual, estacional y diaria. Así mismo está bajo la influencia de dos variables climáticas regionales las cuales son la Oscilación Decenal del Pacífico y la Oscilación del Sur de El Niño (Checkley y Barth, 2009).

El Pacífico Oriental Tropical es una subregión biogeográfica marina que va desde el sur de la península de Baja California y el Mar de Cortés en México hasta la caleta de Cabo Blanco en Perú (Briggs, 1974). Las aguas de esta subregión marina se encuentran en el extremo oriental de un sistema de corrientes ecuatoriales que abarca toda la cuenca, entre dos grandes giros subtropicales y en el término de dos corrientes limítrofes orientales (Fiedler y Taller, 2006). En términos bióticos, se considera una zona relativamente bien estudiada (Robertson y Allen, 2015) y homogénea debido a su alto endemismo. El Pacífico Sudoriental se extiende desde el noroeste de Perú hasta el estrecho de magallanes (Chile), presenta una alta heterogeneidad en sus condiciones hidrográficas, tanto horizontal como verticalmente, ya sea desde la costa hasta el mar abierto, como desde su superficie hacia la profundidad más allá de la capa de mezcla, con un fuerte gradiente de oxígeno disuelto, temperatura, densidad y salinidad (González *et al.*, 2020). Esta subregión se caracteriza por la presencia de una importante zona de mínimo oxígeno, además de experimentar una surgencia costera estacional de aguas frías y profundas ricas en oxigeno sostenidas por el Sistema de Corrientes de Humboldt (Fernández-Urruzola *et al.*, 2023).

Los estudios sobre riqueza y composición íctica en los sistemas estuarinos son relativamente escasos; algunos han sido más estudiados que otros, pero existen notables vacíos de información taxonómica y ecológica para muchas áreas especialmente en las zonas del Pacífico Tropical Oriental y Sudoriental. El objetivo de este capítulo fue generar un listado taxonómico de la ictiofauna estuarina a lo largo del Pacífico Oriental identificando las especies endémicas, así como las que presentan una categoría de riesgo según la lista roja de la UICN (Unión Internacional para la Conservación de la Naturaleza) y el appendice CITES (Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres) al que pertenece.

MATERIALES Y MÉTODO

RECOPILACIÓN DE DATOS

Se realizó una revisión bibliográfica exhaustiva de la composición ictiofaunística de 104 localidades estuarinas a lo largo del Pacífico Oriental (Figs. 6-9) (Tabs. 11-14), considerando el registro de peces con distribuciones dentro de las localidades estuarinas. Se revisaron un total de 81 trabajos, consistentes en artículos científicos, capítulos de libro, tesis, informes y bases de datos de repositorio digitales. Para la inclusión de las especies se utilizaron como criterios el conocimiento de su distribución geográfica corroborada en plataformas digitales, los reportes de estudios consultados y su validación taxonómica mediante la base de datos en línea del Catálogo de Eschmeyer's Catalogue of Fishes (Eschmeyer *et al.*, 2024).

En este estudio se incluyeron peces tanto en su etapa juvenil como adultos, por otro lado, excluyeron las especies de regiones insulares, así como las especies exóticas dado a que estas pueden alterar o sesgar las agrupaciones naturales de la ictiofauna, así como el carecimiento de estos cuerpos agua costeros en estas regiones.

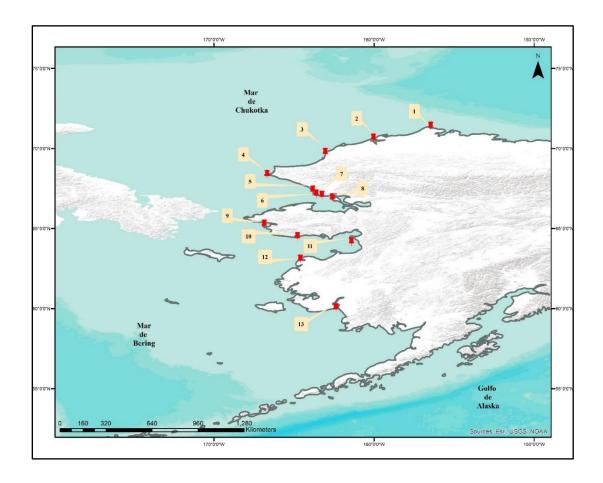


Figura. 6. Localidades estuarinas del Pacífico Oriental Ártico-Polar: Point Barrow (1), Wainwright (2), Point Lay (3), Point Hope (4), Kotlik Lagoon (5), Krusenstern Lagoon (6), Aukulak Lagoon (7), Kotzebue (8), Port Clarence (9), Safety Sound (10), Norton Sound (11), Delta River Yukon (12) y Kuskokwim Bay (13).

Figura 7. Localidades estuarinas del Pacífico Nororiental: Kachemak Bay (14), Glacier Bay (15), Fraser River (16), Grays Harbor (17), Willampa Bay (18), Columbia River (19), Nehalem Bay (20), Tillamook Bay (21), Netarts Bay (22), Siletz Bay (23), Yaquina Bay (24), Alsea Bay (25), Coos Bay (26), Lake Earl (27), Humboldt Bay (28), Tomales Bay (29), Estero Drakes (30), Bolinas Bay (31), San Francisco Bay (32), Elkhorn Slough (33), Morro Bay (34), Santa Mónica Lagoon (35), Alamitos Bay (36), Anaheim Bay (37), Newport Bay (38), Mission Bay (39), San Diego Bay (40), Punta Banda (41) y San Quintín (42).

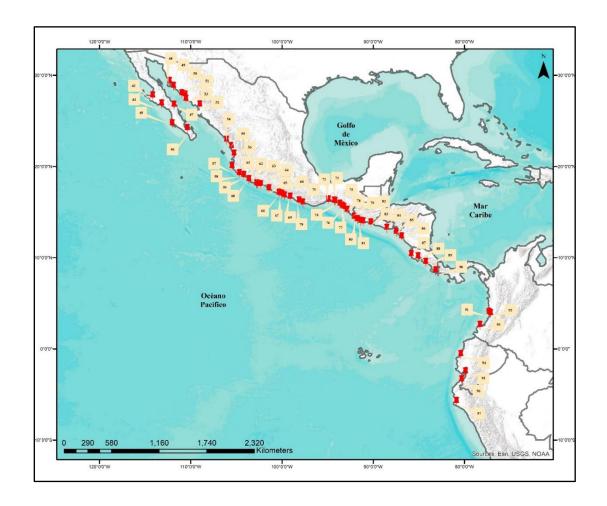


Figura 8. Localidades estuarinas del Pacífico Oriental Tropical. Laguna Ojo de Liebre (43), Laguna San Ignacio (44), Bahía Magdalena (45), Bahía La Paz (46), Bahía Concepción (47), Laguna El Sargento (48), Laguna Santa Cruz (49), Estero El Soldado (50), Laguna Las Guásimas (51), Laguna Los Algodones (52), Bahía Lobos (53), Laguna Huizache-Caimanero (54), Laguna Teacapan Agua Brava (55), Estero El Custodio (56), Laguna Agua Dulce El Ermitaño (57), Laguna Barra de Navidad (58), Laguna Cuyutlán (59), Laguna Salinas del Padre (60), Barra de Nexpa (61), Laguna Teolan (62), Laguna Mexcalhuacan (63), Barra de Pichi (64), Laguna El Potosí (65), Laguna Mitla (66), Laguna Coyuca (67), Laguna Tres Palos (68), Laguna Chautengo (69), Laguna Corralero Alotengo (70), Laguna Chacahua Pastoría (71), Laguna Superior Inferior (72), Huave (73), Laguna Mar Muerto (74), Laguna La Joya Buenavista (75), Laguna Los Patos Solo Dios (76), Laguna Carretas Pereyra (77), Laguna Chantuto Panzacola (78), Manchón-Guamuchal (79), Tulate (80), Tecojate (81), Sipacate-Naranjo (82), Las lisas (83), Bahía de Jiquilisco (84), Estero Padre Ramos (85), Estero Salinas Grandes (86), Estero Tamarindo (87), Nicoya (88), Estero Damas Palo Seco (89), Estero Zancudo (90), Bahía de Málaga (91), Bahía de Buenaventura (92), Bahía de Sanquianga (93), Chone (94), El Palmar (95), Tumbes (96) y Estero Verrila (97).

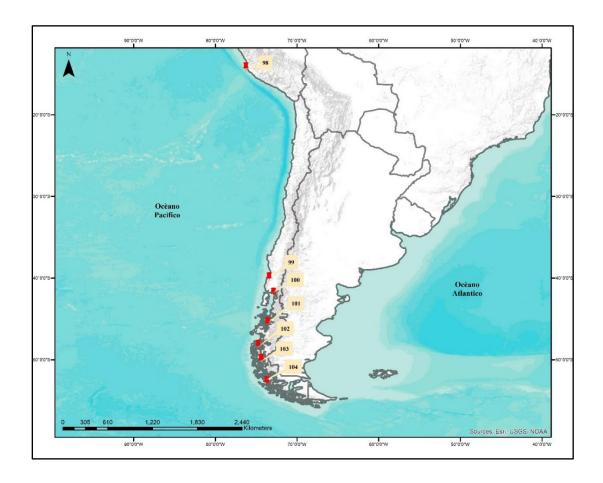


Figura 9. Localidades estuarinas del Pacífico Sudoriental. Laguna Grande (98), Bahía de Corral (99), Reloncavi (100), Canal Aysén (101), Katalalixar (102), Bernardo O Higgins (103) y Alacalufes (104).

GRUPOS REGIONALES, CATEGORÍA DE RIESGO Y ENDEMICIDAD

A partir del listado integrado, se determinaron con una matriz de presencia-ausencia (1-0) de los registros de peces por localidad. Posteriormente se realizó un análisis de conglomerados (UPGMA), sobre una matriz de distancia basado en un Índice de disimilitud de Beta diversidad de Jaccard (Bjtu) (Baselga, 2010; 2012) el cual se refiere a la proporción de especies que pueden ser remplazados entre dos sitios. El análisis se realizó en el programa estadístico de R v. 4.3.3 (R Core Team, 2024).

El listado final se construyó considerando los niveles taxonómicos de Clase, Orden, Suborden, Familia, Subfamilia, Género y Especie. A cada especie taxonómicamente corroborada, se le asignó como nota el grupo regional en el que se distribuye, así como su categoría de riesgo

de acuerdo a la lista roja de la IUCN (2024), su carácter de endémico (Eschmeyer *et al.*, 2024) y bajo al appendice CITES al que pertenece.

RESULTADOS

Se recopiló un listado taxonómico integrado por un total de 970 especies válidas, de las cuales están dentro de 5 clases, 51 órdenes, 46 subórdenes, 193 familias, 103 subfamilias y 509 géneros. Los órdenes con más número de especies fueron los Perciformes, Carangiformes y Acanthuriformes. A su vez, las familias con mayor número de especies fueron Sciaenidae (49), Gobiidae (39), Carangidae (27), Haemulidae (27), Scorpaenidae (25), Engraulidae (22), Psychrolutidae (21) y Salmonidae (20). Por otra parte, las especies con mayor frecuencia de registro en localidades a lo largo del Pacifico Oriental fueron *Mugil setosus* (47) seguido de *Diapterus brevirostris* (46), *Caranx caninus* (45), *Mugil cephalus* (45) y *Lutjanus argentiventris* (40).

Dentro del listado se encuentran 78 especies dentro de una categoría de riesgo según la lista roja de la IUCN de las cuales 57 especies están dentro de la categoría de preocupación menor, tres especies son categorizadas como casi amenazadas, así mismo tres especies son categorizadas vulnerables y 15 especies no presentan una categorización (Tabla 2). A su vez, se encontraron cuatro especies dentro de los appendices de CITES (Tabla 5) (Figura 27). Se encontraron 11 especies endémicas (Tabla 3) (Figura 26), de las cuales una especie está dentro de la lista roja de la IUCN (Tabla 4). Las especies que dominaron dentro de estos ambientes fueron las marinas (635 especies) (Tabla 10) seguido de las especies salobres-marinas (140 especies) (Tabla 9), dulceacuícolas-salobres-marinas (117 especies) (Tabla 8), dulceacuícolas (54 especies) (Tabla 7) y por ultimo los dulceacuícolas-salobres (23 especies) (Tabla 6).

A partir del análisis UPGMA (Correlación cofenética: 0.89), se determinaron cuatro grupos regionales (Figura 10), nombrados de la siguiente manera: I-Pacífico Polar-Ártico Oriental, integrado por 13 localidades analizadas; II-Pacífico Frío-Cálido Nororiental, integrada por 29 localidades; III-Pacífico Oriental Tropical, integrado por 55 localidades analizadas; y IV-Pacífico Frío-Cálido Suroriental, integrado por siete localidades.

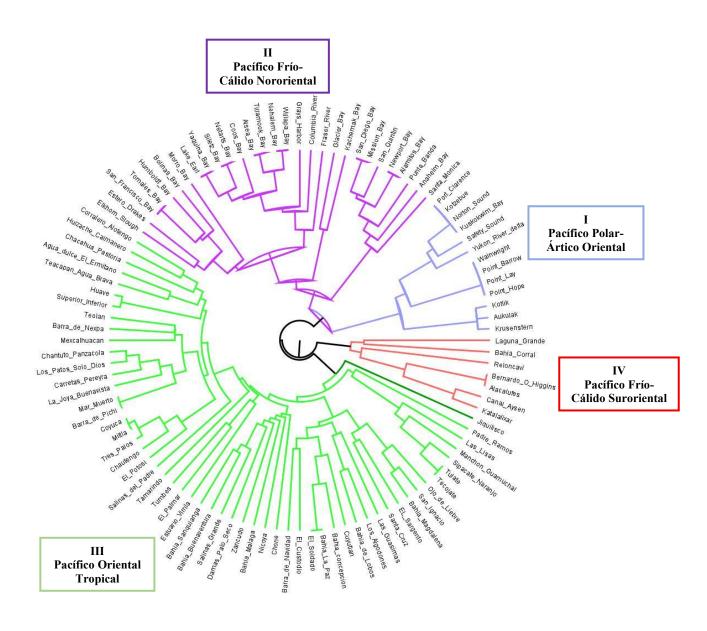


Figura 10. Dendograma de formaciones de grupos ictiofaunísticos de estuarios del Pacífico Oriental.

LISTADO TAXONÓMICO DE PECES EN AMBIENTES ESTUARINOS DEL PACIFICO ORIENTAL

Clase Myxini

Orden Myxiniformes

Familia Myxinidae Rafinesque 1815

Subfamilia Eptatretinae Bonaparte 1850

• Eptatretus stoutii (Lockington 1878) Marino. (Grupo II: ID: 33)

Clase Petromyzonti

Orden Petromyzontiformes

Familia Petromyzontidae Bonaparte 1831

- Entosphenus tridentatus (Richardson 1836) **Dulceacuícolas-salobres-marinas**. (**Grupo** II: **ID**: 19, 21, 22, 24, 26, 27 y 32)
- Lampetra richardsoni (Vladykov y Follett 1965) Dulceacuícola. (Grupo II: ID:
 22)
- Lampetra ayresii (Günther 1870) Dulceacuícolas-salobres-marinas. (Grupo II:
 ID: 16, 19 y 32)
- Lethenteron camtschaticum (Tilesius 1811) **Dulceacuícolas-salobres-marinas**. (**Grupo** I: **ID**: 8, 9, 11, 12 y 13)

Familia Geotriidae Gill 1893

Geotria australis (Gray 1851) Dulceacuícolas-salobres-marinas. (Grupo IV: ID:
 101)

Clase Elasmobranchii

Orden Heterodontiformes

Familia Heterodontidae Gray 1851

- Heterodontus francisci (Girard 1855) Marino. (Grupo II: ID: 34, 40, 41 Grupo III: ID: 43, 44, 45, 46, 47 y 69)
- Heterodontus mexicanus (Taylor y Castro-Aguirre 1972) Marino. (Grupo III: ID: 45, 46, 71 y 73)

Orden Orectolobiformes

Familia Ginglymostomatidae Gill 1862

Ginglymostoma unami (Del Moral-Flores et al., 2015) Marino. (Grupo III: ID: 65 y 73)

Orden Lamniformes

Familia Lamnidae Bonaparte 1835

• Isurus oxyrinchus (Rafinesque 1810) Marino. (Grupo III: ID: 44)

Orden Carcharhiniformes

Suborden Carcharhinoidei

Familia Atelomycteridae White 1936

- Schroederichthys bivius (Smith 1838) Marino. (Grupo IV: ID: 101)
- Schroederichthys chilensis (Guichenot 1848) Marino. (Grupo IV: ID: 101)

Familia Pentanchidae Smith 1912

• Bythaelurus canescens (Günther 1878) Marino. (Grupo IV: ID: 101)

Familia Triakidae Gray 1851

- Triakis semifasciata (Girard 1855) Marino. (Grupo II: ID: 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, Grupo III: ID: 41, 43, 44 y 45)
- Mustelus henlei (Gill 1863) Marino. (Grupo II: ID: 28, 31, 32, 33, 37, 40 Grupo III: ID: y 46
- Mustelus californicus (Gill 1864) Marino. (Grupo II: ID: 33, 34, 35, 37, 38, 40, 41, Grupo III: ID: 44, 45, 46 y 48)
- Mustelus lunulatus (Jordan y Gilbert 1882) Marino. (Grupo II: ID: 42, Grupo III: ID: 44, 46 y 93)
- Galeorhinus galeus (Linnaeus 1758) Marino. (Grupo III: ID: 92)

Familia Carcharhinidae Jordan y Evermann 1896

- Negaprion fronto (Jordan y Gilbert 1882) Salobres marinas. (Grupo III: ID: 45 y
 74)
- Carcharhinus limbatus (Valenciennes 1839) Salobres marinas. (Grupo III: ID: 47, 73, 74, 78, 82 y 93)

- *Rhizoprionodon longurio* (Jordan y Gilbert 1882) **Marino.** (**Grupo** III: **ID**: 47, 58, 73 y 74)
- Carcharhinus cerdale (Gilbert 1898) Salobres marinas. (Grupo III: ID: 51, 74, 92
 y 93)
- Carcharhinus leucas (Valenciennes 1839) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 74 y 87)

Familia Galeocerdonidae Poey 1875

• Galeocerdo cuvier (Péron y Lesueur 1822) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 93)

Familia Sphyrnidae Bonaparte 1840

- Sphyrna zygaena (Linnaeus 1758) Salobres marinas. (Grupo III: ID: 44)
- Sphyrna vespertina (Springer 1940) Salobres marinas. (Grupo III: ID: 74, 92 y
 93)
- Sphyrna lewini (Griffith y Smith 1834) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 79, 82, 83, 85, 92 y 93)

Orden Squaliformes

Familia Squalidae Blainville 1816

• Squalus suckleyi (Girard 1855) Marino. (Grupo II: ID: 19, 26, 28, 31 y 32)

Orden Squatiniformes

Familia Squatinidae Blainville 1816

• Squatina californica (Ayres 1859) Marino. (Grupo II: ID: 34, 37, Grupo III: ID: 44, 45, 46 v 47

Orden Torpediniformes

Familia Platyrhinidae Jordan 1923

• Platyrhinoidis triseriata (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 33, 34, 37, 41, 42, Grupo III: ID: 44, 45 y 47)

Familia Narcinidae Gill 1862

• Diplobatis ommata (Jordan y Gilbert 1890) Marino. (Grupo III: ID: 45, 46 y 47)

Narcine entemedor (Jordan y Starks 1895) Salobres marinas. IUCN (2020):
 Vulnerable

(**Grupo** III: **ID**: 43, 44, 45, 46, 47, 53, 92, 93 y 96)

• Narcine vermiculata (Breder 1928) Marino. (Grupo III: ID: 74)

Familia Torpedinidae Henle 1834

• Tetronarce californica (Ayres 1855) Marino. (Grupo II: ID: 31)

Orden Rhinopristiformes

Familia Trygonorrhinidae Last, Séret y Naylor 2016

• Zapteryx exasperata (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 40, 42, Grupo III: ID: 43, 45, 46 y 47)

Familia Rhinobatidae Bonaparte 1835

- Pseudobatos productus (Ayres 1854) Salobres marinas. (Grupo II: ID: 33, 34, 35, 37, 40, 41, 42, Grupo III: ID: 43, 44, 45, 46, 47, 48, 49, 52, 53 y 58)
- Pseudobatos leucorhynchus (Günther 1867) Marino. Appendice II. (Grupo III: ID: 43, 73, 74 y 85)
- Pseudobatos glaucostigma (Jordan y Gilbert 1883) Marino. Appendice II. (Grupo III: ID: 45, 46, 47, 54, 58, 73, 74 y 93)
- Pseudobatos planiceps (Garman 1880) Marino. Appendice II. (Grupo III: ID: 92, 93 y 96)

Familia Pristidae Bonaparte 1835

Pristis zephyreus (Jordan y Starks 1895) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 54, 69, 73, 74, 92 y 93)

Orden Rajiformes

Familia Rajidae Blainville 1816

- Beringraja binoculata (Girard 1855) Marino. (Grupo II: ID: 16, 17, 18, 19, 21, 24 y 32)
- Caliraja cortezensis (McEachran y Miyake 1988) Marino. *Endémico. (Grupo III: ID: 47)
- Caliraja rhina (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 21, 24 y 26)

- Rostroraja equatorialis (Jordan y Bollman 1890) Marino. (Grupo III: ID: 44, 46, 47 y 93)
- Rostroraja velezi (Chirichigno F. 1973) Marino. (Grupo III: ID: 93)

Orden Myliobatiformes

Familia Dasyatidae Jordan y Gilbert 1879

Subfamilia Dasyatinae Jordan y Gilbert 1879

- Hypanus dipterurus (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 42, Grupo III: ID: 43, 44, 45, 46, 47, 49 y 53)
- Hypanus longus (Garman 1880) Marino. (Grupo III: ID: 44, 45, 49, 73, 74, 75, 78 y 93)
- Pteroplatytrygon violacea (Bonaparte 1832) Marino. (Grupo II: ID: 41)

Familia Potamotrygonidae Garman 1877

Subfamilia Styracurinae Carvalho, Loboda y da Silva 2016

Styracura pacifica (Beebe y Tee-Van 1941) Marino. (Grupo III: ID: 73, 74, 75, 78, 88 y 90)

Familia Urotrygonidae McEachran, Dunn y Miyake 1996

Urotrygon asterias (Jordan y Gilbert 1883) Marino. IUCN (2024). (Grupo III: ID: 45, 69, 73 y 74)

- Urotrygon aspidura (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 45, 65, 69, 73, 74, 92, 93 y 96)
- Urotrygon chilensis (Günther 1872) Marino. (Grupo III: ID: 96 y 97)
- *Urotrygon munda* (Gill 1863) **Marino.** (**Grupo** III: **ID**: 45, 54, 55, 65, 69, 73, 74, 84, 89, 92, 93 y 96)
- Urotrygon nana (Miyake y McEachran 1988) Marino. (Grupo III: ID: 54, 65, 73, 74 y 90)
- Urotrygon peruanus (Hildebrand 1946) Marino. * Endémico (Grupo III: ID: 96)
- Urotrygon rogersi (Jordan y Starks 1895) Marino. (Grupo III: ID: 45, 46, 47, 48 y 92)
- Urobatis concentricus (Osburn y Nichols 1916) Marino. (Grupo III: ID: 45, 46, 48 y 49)

- Urobatis halleri (Cooper 1863) Marino. (Grupo II: ID: 33, 34, 35, 37, 38, 40, 41, 42, Grupo III: ID: 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 58, 65 y 69)
- Urobatis maculatus (Garman 1913) Marino. (Grupo III: ID: 43, 44, 45, 46, 47, 49, 50 y 51)
- Urobatis tumbesensis (Chirichigno F. y McEachran 1979) Salobres marinas. (Grupo III: ID: 96)

Familia Gymnuridae Fowler 1934

• Gymnura marmorata (Cooper 1864) Salobres marinas. IUCN (2020): Casi amenazada (Grupo II: ID: 40, 41, 42, Grupo III: ID: 43, 44, 45, 46, 47, 49, 51, 52, 53, 73, 74, 93 y 96)

Familia Aetobatidae Agassiz 1858

Aetobatus laticeps (Gill 1865) Salobres marinas. (Grupo III: ID: 45, 58, 78, 88, 92 y 93)

Familia Myliobatidae Bonaparte 1835

- Myliobatis californica (Gill 1865) Marino. IUCN (2015): Preocupación menor (Grupo II: ID: 28, 30, 31, 32, 33, 34, 37, 38, 40, 41, 42, Grupo III: ID: 43, 44, 45 y 53)
- Myliobatis longirostris (Applegate y Fitch 1964) Marino. (Grupo III: ID: 45 y 47)
 Familia Rhinopteridae Jordan y Evermann 1896
 - Rhinoptera steindachneri (Evermann y Jenkins 1891) Marino. IUCN (2019): Casi amenazada (Grupo III: ID: 44, 47, 51, 54, 58, 74, 78, 79 y 85)

Familia Mobulidae Gill 1893

• Mobula munkiana (Notarbartolo-di-Sciara 1987) Marino. IUCN (2018): Vulnerable (Grupo III: ID: 46)

Clase Holocéfalos

Orden Chimaeriformes

Familia Callorhinchidae Garman 1901

• Callorhinchus callorynchus (Linnaeus 1758) Marino. (Grupo IV: ID:101)

Clase Actinopteri

Orden Acipenseriformes

Familia Acipenseridae Bonaparte 1831

- Acipenser medirostris (Ayres 1854) Dulceacuícolas-salobres-marinas.
 Appendice II. (Grupo II: ID: 17, 18, 21, 24, 26, 27, 28 y 32)
- Acipenser transmontanus (Richardson 1836) Dulceacuícolas-salobres-marinas.
 (Grupo II: ID: 17, 18, 19, 20, 21, 24, 26 y 32)

Orden Lepisosteiformes

Familia Lepisosteidae Agassiz 1832

• Atractosteus tropicus (Gill 1863). **Dulceacuícolas Salobres.** (**Grupo** III: **ID**: 75, 76, 77 y 78)

Orden Elopiformes

Familia Elopidae Valenciennes 1847

• Elops affinis (Regan 1909) Salobres marinas. IUCN (2019) (Grupo III: ID: 46, 47, 51, 52, 53, 54, 55, 56, 58, 59, 65, 67, 68, 69, 71, 73, 74, 75, 77, 78, 86, 87, 88, 92, 93 y 94)

Orden Albuliformes

Familia Albulidae Bleeker 1849

Subfamilia Albulinae Bleeker 1849

- Albula esuncula (Garman 1899) Marino. IUCN (2008): Preocupación menor (Grupo II: ID: 38, 40, 42, Grupo III: ID: 43, 46, 47, 51, 57, 69, 71, 73, 74, 75, 92, 93, 94 y 96)
- Albula pacifica (Beebe 1942) Marino. (Grupo III: ID: 46, 73 y 74)

Orden Anguilliformes

Suborden Anguilloidei

Familia Moringuidae Gill 1885

• Neoconger vermiformis (Gilbert 1890) Marino. (Grupo III: ID: 46)

Suborden Muraenoidei

Familia Heterenchelyidae Regan 1912

• Pythonichthys asodes (Rosenblatt y Rubinoff 1972) Marino. (Grupo III: ID: 93)

Familia Muraenidae Rafinesque 1815

Subfamilia Uropterygiinae Fowler 1925

- Anarchias galapagensis (Seale 1940) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 46)
- Scuticaria tigrina (Lesson 1828) Marino. (Grupo III: ID: 45 y 46)
- Uropterygius macrocephalus (Bleeker 1864) Marino. (Grupo III: ID: 46 y 47)
- Uropterygius polystictus (Myers y Wade 1941) Marino. (Grupo III: ID: 46)

Subfamilia Muraeninae Rafinesque 1815

- Echidna nebulosa (Ahl 1789) Marino. IUCN (2019): Preocupación menor (Grupo III: ID: 46)
- Enchelycore octaviana (Myers y Wade 1941) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 46)
- Gymnothorax castaneus (Jordan y Gilbert 1883) Marino. IUCN (2010):
 Preocupación menor (Grupo III: ID: 46 y 85)
- *Gymnothorax dovii* (Günther 1870) **Marino.** (**Grupo** III: **ID**: 45. 46, 54, 84 y 87)
- Gymnothorax equatorialis (Hildebrand 1946) Marino. (Grupo III: ID: 46 47 y 93)
- Gymnothorax mordax (Ayres 1859) Marino. (Grupo III: ID 43)
- Gymnothorax panamensis (Steindachner 1876) Marino. (Grupo III: ID: 46)
- Gymnothorax verrilli (Jordan y Gilbert 1883) Marino. (Grupo III: ID: 45 y 46)
- Muraena argus (Steindachner 1870) Marino. (Grupo III: ID: 45)
- Muraena clepsydra (Gilbert 1898) Marino. (Grupo III: ID: 45, 46, 92 y 93)
- Muraena lentiginosa (Jenyns 1842) Marino. (Grupo III: ID: 46)

Suborden Congroidei

Familia Ophichthidae Günther 1870

Subfamilia Myrophinae Kaup 1856

Myrophis vafer (Jordan y Gilbert 1883) Marino. (Grupo III: ID: 45, 46, 47, 55, 65, 74, 92 y 93)

 Pseudomyrophis micropinna (Wade 1946) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 46 y 92)

Subfamilia Ophichthinae Günther 1870

- Bascanichthys bascanoides (Osburn y Nichols 1916) Marino. (Grupo III: ID: 45 y
 74)
- Callechelys eristigma (McCosker y Rosenblatt 1972) Marino. (Grupo III: ID: 46)
- Ethadophis byrnei (Rosenblatt y McCosker 1970) Marino. (Grupo III: ID: 74)
- Ethadophis merenda (Rosenblatt y McCosker 1970) Marino. (Grupo III: ID: 45)
- Herpetoichthys fossatus (Myers y Wade 1941) Marino. (Grupo III: ID: 46 y 47)
- Ichthyapus selachops (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 46)
- Ophichthus longipenis (McCosker y Rosenblatt 1998) Marino. IUCN (2010):
 Preocupación menor (Grupo III: ID: 74)
- Ophichthus remiger (Valenciennes 1837) Marino. (Grupo III: ID: 92 y 93)
- Ophichthus triserialis (Kaup 1857) Marino. (Grupo II: ID: 33)
- Ophichthus zophochir (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 45, 51, 52, 54, 74, 78, 84, 85, 92 y 93)
- Pisodonophis daspilotus (Gilbert 1898) Marino. IUCN (2010): Casi amenazada (Grupo III: ID: 91)
- Phaenomonas pinnata (Myers y Wade 1941) Marino. (Grupo III: ID: 46)
- Myrichthys xysturus (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 46, 47, 53, 55, 58, 74, 77 y 84)

Familia Muraenesocidae Kaup 1859

• Cynoponticus coniceps (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 46, 58, 79, 92 y 93)

Familia Congridae Kaup 1856

Subfamilia Congrinae Kaup 1856

- Rhynchoconger nitens (Jordan y Bollman 1890) Marino. (Grupo III: ID: 46 y 47)
 Subfamilia Bathymyrinae Böhlke 1949
 - Ariosoma gilberti (Ogilby 1898) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 45 y 51)

- Paraconger californiensis (Kanazawa 1961) Marino. (Grupo III: ID: 46)
 Subfamilia Heterocongrinae Günther 1870
 - Gorgasia punctata (Meek y Hildebrand 1923) Marino. (Grupo III: ID: 45 y 93)

Orden Clupeiformes

Suborden Clupeoidei

Familia Engraulidae Gill 1861

Subfamilia Engraulinae Gill 1861

- Anchoa argentivittata (Regan 1904) Marino. (Grupo III: ID: 46, 72 y 73)
- Anchoa analis (Miller 1945) Salobres marinas. (Grupo III: ID: 53, 54, 55 y 73)
- Anchoa compressa (Girard 1858) Salobres marinas. (Grupo II: ID: 36, 37, 38, 39, 40, 41, 42, Grupo III: ID: 44 y 55)
- Anchoa curta (Jordan y Gilbert 1882) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 57, 58, 69, 72, 73, 74, 77, 78, 89 y 92)
- Anchoa delicatissima (Girard 1854) Salobres marinas. (Grupo II: ID: 36, 38, 39, 40, 41 y 42)
- Anchoa exigua (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 73, 89, 91 y 94)
- *Anchoa helleri* (Hubbs 1921) **Marino.** (**Grupo** III: **ID**: 46, 50, 52 y 53)
- Anchoa ischana (Jordan y Gilbert 1882) Salobres marinas. (Grupo III: ID: 44, 45, 46, 51, 55, 58, 72, 73, 74, 76, 77, 78, 92, 93 y 96)
- Anchoa mundeola (Gilbert y Pierson 1898) Salobres marinas. (Grupo III: ID: 46, 54, 65, 72, 73, 74, 75, 76, 77, 78 y 90)
- Anchoa mundeoloides (Breder 1928) Marino. (Grupo III: ID: 46, 49, 54, 69 y 73)
- Anchoa nasus (Kner y Steindachner 1867) Salobres marinas. (Grupo III: ID: 45, 51, 72, 73, 92, 93 y 96)
- Anchoa panamensis (Steindachner 1876) Salobres marinas. (Grupo III: ID: 53, 54, 55, 65, 69, 73, 84, 89, 92, 93 y 96)
- *Anchoa lucida* (Jordan y Gilbert 1882) **Salobres marinas**. (**Grupo** III: **ID**: 44, 45, 46, 48, 49, 51, 55, 58, 64, 72, 73, 74, 75, 76, 77, 78, 89, 90, 92, 94 y 96)
- Anchoa scofieldi (Jordan y Culver 1895) Marino. (Grupo III: ID: 60, 69 y 73)

- Anchoa spinifer (Valenciennes 1848) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 74, 87, 90, 91, 92 y 93)
- Anchoa starksi (Gilbert y Pierson 1898) Salobres marinas. (Grupo III: ID: 76, 77, 78, 88, 92 y 96)
- Anchoa walkeri (Baldwin y Chang 1970) Salobres marinas. (Grupo III: ID: 54, 65, 70, 73, 74, 89 y 94)
- Anchovia macrolepidota (Kner 1863) Salobres marinas. (Grupo III: ID: 44, 45, 46, 47, 49, 51, 53, 54, 55, 57, 58, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 84, 89, 92, 93, 94 y 96)
- Cetengraulis mysticetus (Günther 1867) Salobres marinas. (Grupo III: ID: 44, 45, 46, 51, 52, 53, 58, 88, 90, 92, 93 y 95)
- Engraulis mordax (Girard 1854) Marino. (Grupo II: ID: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, Grupo III: ID: 44, 45, 46, 48 y 49)
- Engraulis ringens (Jenyns 1842) Marino. (Grupo IV: ID: 98, 100 y 101)
- Lycengraulis poeyi (Kner 1863) Salobres marinas. (Grupo III: ID: 88 y 96)

Familia Clupeidae Cuvier 1816

- Clupea pallasii (Valenciennes 1847) Dulceacuícolas-salobres-marinas. (Grupo I: ID: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, Grupo II: ID: 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 y 35)
- Sprattus fuegensis (Jenyns 1842) Marino. (Grupo IV: ID: 100)
- Strangomera bentincki (Norman 1936) Marino. (Grupo IV: ID: 99 y 100)

Familia Dussumieriidae Gill 1861

• Etrumeus acuminatus (Gilbert 1890) Marino. (Grupo III: ID: 44 y 45)

Familia Pristigasteridae Bleeker 1872

- *Ilisha fuerthii* (Steindachner 1875) **Salobres marinas**. (**Grupo** III: **ID**: 60, 88, 92 y 93)
- Neoopisthopterus tropicus (Hildebrand 1946) Salobres marinas. (Grupo III: ID: 84 y 92)
- Odontognathus panamensis (Steindachner 1876) Salobres marinas. IUCN (2020):
 Preocupación menor (Grupo III: ID: 73, 74 y 93)

- Opisthopterus dovii (Günther 1868) Salobres marinas. (Grupo III: ID: 69, 73, 74, 78, 90, 92, 93 y 95)
- Opisthopterus equatorialis (Hildebrand 1946) Salobres marinas. IUCN (2020):
 Preocupación menor (Grupo III: ID: 92 y 93)
- Pliosteostoma lutipinnis (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 54, 56, 58, 64, 69 y 74)

Familia Alosidae Svetovidov 1952

• Sardinops sagax (Jenyns 1842) Marino. (Grupo II: ID: 17, 26, 28, 33, 34, 40, 41, 42, Grupo III: ID: 43, 44, 45, 46, 47, 48, 49 y 56)

Familia Dorosomatidae Gill 1861

- Dorosoma smithi (Hubbs y Miller 1941) *Endémico. Dulceacuícolas Salobres.
 (Grupo III: ID: 54 y 55)
- Harengula thrissina (Jordan y Gilbert 1882) Salobres marinas. (Grupo III: ID: 46, 47, 49, 51, 71, 74, 92 y 93)
- Lile gracilis (Castro-Aguirre y Vivero 1990) Dulceacuícolas-salobres-marinas.
 IUCN (2010): Preocupación menor (Grupo III: ID: 47, 61, 62, 63, 65, 71, 73, 74, 75, 76, 77 y 78)
- Lile nigrofasciata (Castro-Aguirre, Ruiz-Campos y Balart 2002) Marino. (Grupo III: ID: 62, 63, 75, 77 y 78)
- *Lile stolifera* (Jordan y Gilbert 1882) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 45, 46, 47, 51, 53, 54, 55, 57, 65, 66, 67, 68, 69, 71, 72, 73, 74, 84, 87, 88, 89, 90, 91, 92, 93, 94, 95 y 96)
- Opisthonema bulleri (Regan 1904) Marino. (Grupo III: ID: 92 y 93)
- Opisthonema medirastre (Berry y Barrett 1963) Marino. (Grupo III: ID: 45, 46, 47, 48, 90, 91 y 92)
- Opisthonema libertate (Günther 1867) Salobres marinas. (Grupo III: ID: 43, 44, 45, 46, 47, 51, 53, 54, 55, 56, 58, 59, 65, 69, 72, 73, 74, 75, 78, 84, 90, 92 y 93)

Orden Gonorynchiformes

Familia Chanidae Günther 1868

Chanos chanos (Fabricius 1775) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 44, 45, 46, 47, 52, 53, 54, 55, 57, 58, 59, 60, 65, 68, 69, 71, 73, 74, 75, 77, 78 y 87)

Orden Cypriniformes

Suborden Catostomoidei

Familia Catostomidae Agassiz 1850

Subfamilia Catostominae Agassiz 1850

- Catostomus occidentalis (Ayres 1854) Dulceacuícola. (Grupo II: ID: 32)
- Catostomus tsiltcoosensis (Evermann y Meek 1898) Dulceacuícola. (Grupo II: ID: 16, 17, 19 y 26)

Familia Leuciscidae Bonaparte 1835

Subfamilia Laviniinae Bleeker 1863

- Lavinia exilicauda (Baird y Girard 1854) Dulceacuícola. (Grupo II: ID: 32)
- Orthodon microlepidotus (Ayres 1854) Dulceacuícolas Salobres. (Grupo II: ID:
 32)
- Ptychocheilus grandis (Ayres 1854) Dulceacuícola. (Grupo II: ID: 32)
- Ptychocheilus oregonensis (Richardson 1836) Dulceacuícola. (Grupo II: ID: 16, 17 y 19)

Subfamilia Pogonichthyinae Girard 1858

- Pogonichthys macrolepidotus (Ayres 1854) Dulceacuícolas Salobres. (Grupo II: ID: 32)
- Richardsonius balteatus (Richardson 1836) Dulceacuícola. (Grupo II: ID: 16, 17 y 26)
- Rhinichthys osculus (Girard 1856) Dulceacuícola. (Grupo II: ID: 17 y 26)
- Mylocheilus caurinus (Richardson 1836) Dulceacuícolas Salobres. (Grupo II: ID: 16, 17, 18 y 19)

Orden Characiformes

Suborden Characoidei

Familia Parodontidae Eigenmann 1910

• Saccodon wagneri (Kner 1863) Dulceacuícola. (Grupo III: ID: 96)

Familia Curimatidae Gill 1858

- Pseudocurimata troschelii (Günther 1860) Dulceacuicola. (Grupo III: ID: 96)
- Pseudocurimata peruana (Eigenmann 1922) Dulceacuícola. (Grupo III: ID: 96)

Familia Lebiasinidae Gill 1889

Subfamilia Lebiasininae Gill 1889

• Lebiasina bimaculata (Valenciennes 1847) Dulceacuícola. (Grupo III: ID: 96)

Familia Bryconidae Eigenmann 1912

Subfamilia Bryconinae Eigenmann 1912

- Brycon atrocaudatus (Kner 1863) **Dulceacuícola**. (**Grupo** III: **ID**: 96 y 97)
- Brycon dentex (Günther 1860) Dulceacuícola. (Grupo III: ID: 96)
- Chilobrycon deuterodon (Géry y de Rham 1981) Dulceacuícola. (Grupo III: ID: 96)

Familia Stevardiidae Gill 1858

Subfamilia Landoninae Weitzman y Menezes 1998

- Eretmobrycon festae (Boulenger 1898) Dulceacuícola. (Grupo III: ID: 96)
- Eretmobrycon brevirostris (Günther 1860) Dulceacuícola. (Grupo III: ID: 96)
- Eretmobrycon peruanus (Müller y Troschel 1845) Dulceacuícola. (Grupo III: ID: 96)

Familia Characidae Latreille 1825

Subfamilia Characinae Latreille 1825

• Roeboides bouchellei (Fowler 1923) **Dulceacuícola.** (**Grupo** III: **ID**: 77 y 78)

Familia Acestrorhamphidae Eigenmann 1907

Subfamilia Rhoadsiinae Fowler 1911

• Rhoadsia altipinna (Fowler 1911) **Dulceacuícola.** (**Grupo** III: **ID**: 96)

Subfamilia Acestrorhamphinae Eigenmann

• Astyanax aeneus (Günther 1860) **Dulceacuícola**. (**Grupo** III: **ID**: 65, 66, 67, 68, 69, 73, 75, 76, 77 y 78)

• Astyanax panamensis (Günther 1864) Dulceacuícola. (Grupo III: ID: 92)

Orden Siluriformes

Suborden Cetopsoidei

Familia Cetopsidae Bleeker 1858

Subfamilia Cetopsinae Bleeker 1858

 Paracetopsis atahualpa (Vari, Ferraris y de Pinna 2005) Dulceacuícola. (Grupo III: ID: 96)

Suborden Loricarioidei

Familia Trichomycteridae Bleeker 1858

Subfamilia Trichomycterinae Bleeker 1858

• Trichomycterus punctulatus (Valenciennes 1846) *Endémico. Dulceacuícola. (Grupo III: ID: 97)

Familia Loricariidae Rafinesque 1815

Subfamilia Hypostominae Kner 1853

• Chaetostoma microps (Günther 1864) Dulceacuícola. (Grupo III: ID: 96)

Suborden Siluroidei

Familia Heptapteridae Gill 1861

Subfamilia Rhamdiinae Bleeker 1862

- Pimelodella elongata (Günther 1860) **Dulceacuícola**. (**Grupo** III: **ID**: 96)
- Pimelodella yuncensis (Steindachner 1902) Dulceacuícola. (Grupo III: ID: 97)
- Rhamdia laticauda (Kner 1858) **Dulceacuícola.** (**Grupo** III: **ID**: 77 y 78)

Familia Ariidae Bleeker 1858

Subfamilia Galeichthyinae Acero y Betancur-R. 2007

• Galeichthys peruvianus (Lütken 1874) Marino. (Grupo III: ID: 46, 92 y 96)

Subfamilia Ariinae Bleeker 1858

- Ariopsis guatemalensis (Günther 1864) Salobres marinas. (Grupo III: ID: 54, 55, 57, 58, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81 y 82)
- Ariopsis seemanni (Günther 1864) Dulceacuícolas-salobres-marinas. (Grupo III:
 ID: 46, 51, 53, 54, 55, 56, 59, 69, 70, 71, 72, 73, 74, 75, 76, 78, 84, 86, 88, 89, 91, 92, 93 y 96)

- Cathorops dasycephalus (Günther 1864) Salobres marinas. (Grupo III: ID: 88)
- Cathorops fuerthii (Steindachner 1876) **Dulceacuícolas-salobres-marinas.** (**Grupo** III: **ID**: 54, 55, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 88, 90 y 96)
- Cathorops multiradiatus (Günther 1864) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 92 y 93)
- Cathorops steindachneri (Gilbert y Starks 1904) **Dulceacuícolas Salobres**. (**Grupo** III: **ID**: 74, 75, 76, 77, 78, 84, 88, 90 y 91)
- Notarius kessleri (Steindachner 1876) Salobres marinas. (Grupo III: ID: 54, 74, 78 y 88)
- Notarius osculus (Jordan y Gilbert 1883) Salobres marinas. (Grupo III: ID: 88)
- Notarius planiceps (Steindachner 1876) Salobres marinas. (Grupo III: ID: 45, 46, 47, 54, 73 y 74)
- Notarius troschelii (Gill 1863) Salobres marinas. (Grupo III: ID: 73, 74, 85, 92, 93 y 96)
- Occidentarius platypogon (Günther 1864) Marino. (Grupo III: ID: 44, 45, 46, 47, 51, 82, 83, 88 y 93)
- Sciades dowii (Gill 1863) Dulceacuícolas Salobres. (Grupo III: ID: 73, 74, 78 y 88)

Subfamilia Bagreinae Schultz 1944

- Bagre panamensis (Gill 1863) Salobres marinas. (Grupo III: ID: 44, 45, 46, 47, 48, 52, 53, 74, 78, 83, 84, 85, 86, 90, 92, 93, 96)
- Bagre pinnimaculatus (Steindachner 1876) Salobres marinas. (Grupo III: ID: 45, 46, 56, 78, 82, 83, 90, 92 y 93)

Familia Ictaluridae Gill 1861

- Ameiurus catus (Linnaeus 1758) Dulceacuícola. (Grupo II: ID: 32)
- Ameiurus melas (Rafinesque 1820) Dulceacuícola. (Grupo II: ID: 32 y 38)
- Ameiurus nebulosus (Lesueur 1819) **Dulceacuícola.** (**Grupo** II: **ID**: 24 y 32)

Orden Argentiniformes

Familia Bathylagidae Gill 1884

- Bathylagus pacificus (Gilbert 1890) Marino. (Grupo II: ID: 32)
- Bathylagichthys parini (Kobyliansky 1990) Marino. (Grupo IV: ID: 100)

Orden Salmoniformes

Suborden Salmonoidei

Familia Salmonidae Cuvier 1816

Subfamilia Coregoninae

- Coregonus albula (Linnaeus 1758) Dulceacuícolas-salobres-marinas. (Grupo I:
 ID: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 y 12)
- Coregonus autumnalis (Pallas 1776) Dulceacuícolas-salobres-marinas. (Grupo I:
 ID: 1, 2, 3, 4 y 12)
- Coregonus clupeaformis (Mitchill 1818) **Dulceacuícolas-salobres-marinas.** (**Grupo** I: **ID**: 1, 2, 3 y 4)
- Coregonus nasus (Pallas 1776) Dulceacuícolas-salobres-marinas. (Grupo I: ID: 1, 2, 3, 4, 7, 8, 9, 10, 11 y 12)
- Coregonus pidschian (Gmelin 1789) Dulceacuícolas-salobres-marinas. (Grupo I:
 ID: 5, 6, 7, 8, 9, 10 y 11)
- Coregonus laurettae (Bean 1881) **Dulceacuícolas-salobres-marinas.** (**Grupo** I: **ID**: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 y 12)
- Prosopium cylindraceum (Pennant 1784) Dulceacuícolas-salobres-marinas.
 (Grupo I: ID: 1, 2, 3, 4, 8, 9, 10 y 11)
- Prosopium williamsoni (Girard 1856) Dulceacuícola. (Grupo II: ID: 17)
- Stenodus nelma (Pallas 1773) **Dulceacuícolas-salobres-marinas.** (**Grupo** I: **ID**: 5, 6, 7, 8, 9, 10 y 11)

Subfamilia Thymallinae Gill 1885

• Thymallus arcticus (Pallas 1776) **Dulceacuícola. (Grupo** I: **ID**: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 11)

Subfamilia Salmoninae Cuvier 1816

- Oncorhynchus clarkii (Richardson 1836) Dulceacuícolas-salobres-marinas.
 (Grupo II: ID: 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 y 27)
- Oncorhynchus gorbuscha (Walbaum 1792) **Dulceacuícolas-salobres-marinas.** (**Grupo** I: **ID**:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, **Grupo** II: **ID**: 14 y 16)
- Oncorhynchus keta (Walbaum 1792) Dulceacuícolas-salobres-marinas. (Grupo I: ID:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, Grupo II: ID: 14, 16, 17, 18 19, 20, 21, 22, 23, 24, 25 y 26)
- Oncorhynchus kisutch (Walbaum 1792) Dulceacuícolas-salobres-marinas.
 (Grupo I: ID: 5, 8, 9, 10, 11, 12, 13, Grupo II: ID: 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31 y 32)
- Oncorhynchus mykiss (Walbaum 1792) Dulceacuícolas-salobres-marinas. UICN
 (2024): Preocupación menor. (Grupo II: ID: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32 y 34)
- Oncorhynchus nerka (Walbaum 1792) Dulceacuícolas-salobres-marinas. (Grupo I: ID: 8, 9, 10, 11, 13, Grupo II: ID: 14, 16 y 19)
- Oncorhynchus tshawytscha (Walbaum 1792) Dulceacuícolas-salobres-marinas.
 (Grupo I: ID: 8, 9, 10, 11, 12, 13, Grupo II: ID: 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 y 32)
- Salvelinus alpinus (Linnaeus 1758) Dulceacuícolas-salobres-marinas. (Grupo I:
 ID: 1, 2, 3, 4, 8, 9 y 11)
- Salvelinus namaycush (Walbaum 1792) Dulceacuícola. (Grupo I: ID: 1, 2, 3, 4, 8, 9 y 11)
- Salvelinus malma (Walbaum 1792) Dulceacuícolas-salobres-marinas. (Grupo I:
 ID: 5, 6, 7, 8, 9, 11, Grupo II: ID: 14 y 15)

Suborden Esocoidei

Familia Esocidae Rafinesque 1815

Subfamilia Dalliinae Jordan 1885

- Dallia pectoralis (Bean 1880) **Dulceacuícola**. (**Grupo** I: **ID**: 5, 6, 7, 8, 9 y 11) **Subfamilia** Esocinae Rafinesque 1815
 - Esox lucius (Linnaeus 1758) Dulceacuícolas Salobres. (Grupo I: ID: 8, 9, 11 y 12)

Orden Galaxiiformes

Familia Galaxiidae Müller 1845

Subfamilia Aplochitoninae Günther 1864

- Aplochiton taeniatus (Jenyns 1842) Dulceacuícolas-salobres-marinas. (Grupo IV: ID: 101)
- Aplochiton zebra (Jenyns 1842) Dulceacuícolas-salobres-marinas. (Grupo IV: ID: 101)

Subfamilia Galaxiinae Müller 1845

Galaxias maculatus (Jenyns 1842) Dulceacuícolas-salobres-marinas. (Grupo IV:
 ID: 98 y 101)

Orden Osmeriformes

Suborden Osmeroidei

Familia Osmeridae Regan 1913

- Allosmerus elongatus (Ayres 1854) Marino. (Grupo II: ID: 17, 18, 19, 22, 24, 26, 28 y 32)
- Hypomesus olidus (Pallas 1814) Dulceacuícolas-salobres-marinas. (Grupo I: ID: 5, 6, 7, 8, 9, 11, 12 y 13)
- Hypomesus pretiosus (Girard 1854) Salobres marinas. (Grupo II: ID: 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32 y 33)
- Hypomesus transpacificus (McAllister 1963) Dulceacuícolas Salobres. (Grupo II: ID: 32)
- Mallotus catervarius (Pennant 1784) Marino. (Grupo I: ID: 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, Grupo II: ID: 14 y 15)
- Osmerus mordax (Mitchill 1814) Dulceacuícolas-salobres-marinas. (Grupo I:
 ID: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 y 13)
- Spirinchus starksi (Fisk 1913) Marino. (Grupo II: ID: 21, 28, 32 y 33)
- Spirinchus thaleichthys (Ayres 1860) **Dulceacuícolas-salobres-marinas**. (**Grupo** II: **ID**: 14, 16, 17, 18, 19, 21, 24, 26, 28 y 32)
- Thaleichthys pacificus (Richardson 1836) **Dulceacuícolas-salobres-marinas.** (**Grupo** II: **ID**: 15, 17, 18, 19 y 26)

Orden Stomiiformes

Familia Gonostomatidae Cocco 1838

• Cyclothone acclinidens (Garman 1899) Marino. (Grupo II: ID: 28)

Familia Sternoptychidae Duméril 1805

Subfamilia Maurolicinae Gill 1885

• Maurolicus parvipinnis (Vaillant 1888) Marino. (Grupo IV: ID: 100 y 101)

Orden Aulopiformes

Familia Synodontidae Gill 1861

Subfamilia Synodontinae Gill 1861

- Synodus evermanni (Jordan y Bollman 1890) Marino. (Grupo III: ID: 44, 45, 46 y
 92)
- Synodus lacertinus (Gilbert 1890) Marino. (Grupo III: ID: 45 y 46)
- Synodus lucioceps (Ayres 1855) Marino. (Grupo II: ID: 33, 40, 41, 42, Grupo III: ID: 44, 45 y 51)
- Synodus scituliceps (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 58, 59, 71, 74, 77, 78, 84, 91, 92, 93 y 96)
- Synodus sechurae (Hildebrand 1946) Marino. (Grupo III: ID: 45, 46 y 47)

Familia Alepisauridae Swainson 1839

• Alepisaurus ferox (Lowe 1833) Marino. (Grupo II: ID: 26)

Orden Myctophiformes

Familia Myctophidae Gill 1893

Subfamilia Gymnoscopelinae Paxton 1972

• Lampanyctodes hectoris (Günther 1876) Marino. (Grupo IV: ID: 100)

Subfamilia Lampanyctinae Paxton 1972

 Stenobrachius leucopsarus (Eigenmann y Eigenmann 1890) Marino. (Grupo II: ID: 28 y 32)

Subfamilia Myctophinae Gill 1893

• Tarletonbeania crenularis (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 28 y 32)

Orden Gadiformes

Suborden Gadoidei

Familia Lotidae Bonaparte 1835

• Lota lota (Linnaeus 1758) **Dulceacuícolas Salobres**. (**Grupo** I: **ID**: 1, 2, 3, 4, 8, 9, 10, 11, 12 y 13)

Familia Gadidae Rafinesque 1810

- Boreogadus saida (Lepechin 1774) Salobres marinas. (Grupo I: ID: 1, 2, 3, 4, 8, 9 y 11)
- Eleginus gracilis (Tilesius 1810) **Dulceacuícolas-salobres-marinas**. (**Grupo** I: **ID**: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 y **Grupo** II: **ID**: 14)
- Gadus chalcogrammus (Pallas 1814) Marino. (Grupo II: ID: 14, 15 y 16)
- Gadus macrocephalus (Tilesius 1810) Marino. (Grupo II: ID: 14 y 15)
- Microgadus proximus (Girard 1854) Salobres marinas. (Grupo II: ID: 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32 y 33)
- Micromesistius australis (Norman 1937) Marino. (Grupo IV: ID: 101)

Suborden Merluccioidei

Familia Merlucciidae Rafinesque 1815

- Merluccius australis (Hutton 1872) Marino. (Grupo IV: ID: 100)
- Merluccius gayi (Guichenot 1848) Marino. (Grupo IV: ID: 100 y 101)
- Merluccius productus (Ayres 1855) Marino. (Grupo II: ID: 24, 33 y Grupo III: ID: 45)
- Merluccius polylepis (Ginsburg 1954) Marino. (Grupo IV: ID: 101)

Suborden Macrouroidei

Familia Moridae Moreau 1881

• Salilota australis (Günther 1878) Marino. (Grupo IV: ID: 101)

Familia Macruronidae Regan 1903

• Macruronus novaezelandiae (Hector 1871) Marino. (Grupo IV: ID: 100 y 101)

Familia Macrouridae Bonaparte 1831

- Coelorinchus aconcagua (Iwamoto 1978) Marino. (Grupo IV: ID: 101)
- Coelorinchus fasciatus (Günther 1878) Marino. (Grupo IV: ID: 101)

Orden Beryciformes

Suborden Holocentroidei

Familia Holocentridae Bonaparte 1833

Subfamilia Holocentrinae Bonaparte 1833

• Neoniphon suborbitalis (Gill 1863) Marino. (Grupo III: ID: 46 y 47)

Subfamilia Myripristinae Nelson 1955

• Myripristis leiognathus (Valenciennes 1846) Marino. (Grupo III: ID: 46 y 58)

Orden Ophidiiformes

Familia Ophidiidae Rafinesque 1810

Subfamilia Ophidiinae Rafinesque 1810

- Chilara taylori (Girard 1858) Marino. (Grupo II: ID: 33 y Grupo III: ID: 45)
- Genypterus blacodes (Forster 1801) Marino. (Grupo IV: ID: 101)
- Genypterus chilensis (Guichenot 1848) Marino. (Grupo IV: ID: 101)
- Genypterus maculatus (Tschudi 1846) Marino. (Grupo IV: ID: 100 y 104)
- Lepophidium pardale (Gilbert 1890) Marino. (Grupo III: ID: 46)
- Lepophidium prorates (Jordan y Bollman 1890) Marino. (Grupo III: ID: 46, 47 y
 92)
- Ophidion fulvum (Hildebrand y Barton 1949) Marino. (Grupo III: ID: 91, 92 y 93)
- Ophidion galeoides (Gilbert 1890) Marino. (Grupo III: ID: 45 y 46)
- Ophidion iris (Breder 1936) Marino. (Grupo III: ID: 46)
- Ophidion scrippsae (Hubbs 1916) Marino. (Grupo III: ID: 44 y 45)
- Otophidium indefatigabile (Jordan y Bollman 1890) Marino. (Grupo III: ID: 46)

Familia Carapidae Poey 1867

Subfamilia Carapinae Poey 1867

- Carapus dubius (Putnam 1874) Marino. (Grupo III: ID: 45 y 46)
- Echiodon exsilium (Rosenblatt 1961) Marino. (Grupo III: ID: 46 y 47)

Familia Bythitidae Gill 1861

- Brosmophycis marginata (Ayres 1854) Marino. (Grupo II: ID: 32)
- Cataetyx messieri (Günther 1878) Marino. (Grupo IV: ID: 100)

- Grammonus diagrammus (Heller y Snodgrass 1903) Marino. (Grupo III: ID: 46)
- Petrotyx hopkinsi (Heller y Snodgrass 1903) Marino. (Grupo III: ID: 46)

Familia Dinematichthyidae Whitley 1928

• Ogilbia ventralis (Gill 1863) Marino. (Grupo III: ID: 45 y 46)

Orden Batrachoidiformes

Familia Batrachoididae Jordan 1896

Subfamilia Porichthyinae Miranda Ribeiro 1915

- Aphos porosus (Valenciennes 1837) Marino. (Grupo IV: ID: 101)
- Porichthys analis (Hubbs y Schultz 1939) Marino. (Grupo III: ID: 45, 46, 47 y 51)
- Porichthys greenei (Gilbert y Starks 1904) Marino. (Grupo III: ID: 78 y 84)
- Porichthys notatus (Girard 1854) Marino. (Grupo II: ID: 16, 17, 18, 28, 30, 31, 32, 33, 34, 40, 42, Grupo III: ID: 45, 46, 47 y 51)
- Porichthys margaritatus (Richardson 1844) Marino. (Grupo III: ID: 52 y 92)
- Porichthys myriaster (Hubbs y Schultz 1939) Marino. (Grupo II: ID: 37, 38, 40, 41, 42, Grupo III: ID: 43, 44, 45, 46 y 47)

Subfamilia Thalassophryninae Miranda Ribeiro 1915

- Daector dowi (Jordan y Gilbert 1887) Marino. (Grupo III: ID: 91, 92, 93, 94 y 96)
 Subfamilia Batrachoidinae Jordania 1896
 - Batrachoides boulengeri (Gilbert y Starks 1904) Marino. (Grupo III: ID: 73, 74, 83, 90 y 93)
 - Batrachoides pacifici (Günther 1861) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 89, 91, 92, 93 y 96)
 - Batrachoides waltersi (Collette y Russo 1981) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 72, 73, 74 y 78)

Orden Gobiiformes

Suborden Apogonoidei

Familia Apogonidae Günther 1859

Subfamilia Apogoninae Günther 1859

• Apogon atricaudus (Jordan y McGregor 1898) Marino. (Grupo III: ID: 46)

- Apogon dovii (Günther 1862) Marino. (Grupo III: ID: 92)
- Apogon pacificus (Herre 1935) Marino. (Grupo III: ID: 95)
- Apogon retrosella (Gill 1862) Marino. (Grupo III: ID: 45 y 46)

Suborden Gobioidei

Familia Eleotridae Bonaparte 1835

Subfamilia Eleotrinae Bonaparte 1835

- Dormitator latifrons (Richardson 1844) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 97)
- *Eleotris picta* (Kner 1863) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 54, 55, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69 70, 73, 74, 75, 76, 77, 78, 87, 91, 92, 93 y 96)
- Erotelis armiger (Jordan y Richardson 1895) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 46, 58, 74, 76, 78 y 92)
- Gobiomorus maculatus (Günther 1859) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 46, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 88, 89, 90, 91, 92, 93, 95 y 96)
- Guavina micropus (Ginsburg 1953) Dulceacuícolas Salobres. (Grupo III: ID: 78, 91 y 96)
- Hemieleotris latifasciata (Meek y Hildebrand 1912) Dulceacuícolas Salobres.
 (Grupo III: ID: 92 y 93)
- Hemieleotris levis (Eigenmann 1918) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 93)

Familia Oxudercidae Günther 1861

Subfamilia Gobionellinae Bleeker 1874

- Awaous transandeanus (Günther 1861) **Dulceacuícolas-salobres-marinas.** (**Grupo** III: **ID**: 55, 61, 62, 63, 64, 67, 73, 74, 77, 90, 92, 93 y 96)
- Ctenogobius manglicola (Jordan y Starks 1895) Salobres marinas. (Grupo III: ID:
 46)
- Ctenogobius sagittula (Günther 1862) **Dulceacuícolas-salobres-marinas.** (**Grupo** III: **ID**: 42, **Grupo** III: **ID**: 44, 45, 46, 47, 50, 54, 55, 58, 61, 65, 67, 68, 69, 72, 73, 74, 75, 77, 78, 84, 87, 91, 92, 93, 94, 96 y 97)

- Clevelandia ios (Jordan y Gilbert 1882) Salobres marinas. (Grupo II: ID: 16, 17, 18, 21, 24, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, Grupo III: ID: 43, 48 y 49)
- Eucyclogobius newberryi (Girard 1856) Salobres marinas. (Grupo II: ID: 28 y 34)
- Evermannia zosterura (Jordan y Gilbert 1882) Salobres marinas. IUCN (2010):
 Preocupación menor (Grupo III: ID: 48, 49, 72, 73 y 96)
- Evorthodus minutus (Meek y Hildebrand 1928) **Dulceacuícolas-salobres-marinas.** (**Grupo** III: **ID**: 46, 59, 77, 78, 94 y 96)
- Gillichthys mirabilis (Cooper 1864) Dulceacuícolas-salobres-marinas. (Grupo II:
 ID: 28, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, Grupo III: ID: 43, 45, 46, 47, 48 y 49)
- Gobionellus microdon (Gilbert 1892) Salobres marinas. (Grupo III: ID: 51, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78 y 94)
- Gobionellus liolepis (Meek y Hildebrand 1928) Marino. (Grupo III: ID: 78, 92 y 94)
- Gobioides peruanus (Steindachner 1880) Dulceacuícolas Salobres. (Grupo III: ID: 78)
- *Ilypnus gilberti* (Eigenmann y Eigenmann 1889) **Marino.** (**Grupo** II: **ID**: 32, 37, 38, 40, 41, 42, **Grupo** III: **ID**: 43, 44, 45, 46, 48 y 49)
- Lepidogobius lepidus (Girard 1858) Marino. (Grupo II: ID: 17, 18, 21, 24, 26, 28, 30, 32, 33, 34 y 41)
- Quietula y-cauda (Jenkins y Evermann 1889) Salobres marinas. (Grupo II: ID: 37, 38, 40, 41, 42, Grupo III: ID: 43, 44, 45, 46, 47, 48 y 49)

Subfamilia Sicydiinae Gill 1860

 Sicydium salvini (Ogilvie-Grant 1884) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 78)

Familia Gobiidae Cuvier 1816

Subfamilia Gobiinae Cuvier 1816

- Aboma etheostoma (Jordan y Starks 1895) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 55, 73, 74, 75 y 78)
- Aruma histrio (Jordan 1884) Marino. (Grupo III: ID: 46 y 47)

- Bathygobius andrei (Sauvage 1880) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 75, 77, 78, 89, 91, 92 y 96)
- Bathygobius lineatus (Jenyns 1841) Marino. (Grupo III: ID: 94)
- Bathygobius ramosus (Ginsburg 1947) Marino. (Grupo III: ID: 45, 46, 58, 69, 73, 74, 92 y 93)
- Barbulifer mexicanus (Hoese y Larson 1985) Marino. (Grupo III: ID: 54, 55, 73 y
 74)
- Barbulifer pantherinus (Pellegrin 1901) Marino. (Grupo III: ID: 46)
- Bollmannia macropoma (Gilbert 1892) Marino. IUCN (2010) (Grupo III: ID: 46)
- Bollmannia ocellata (Gilbert 1892) Marino. IUCN (2010) (Grupo III: ID: 46 y 47)
- Bollmannia stigmatura (Gilbert 1892) Marino. IUCN (2010) (Grupo III: ID: 46 y
 51)
- Bollmannia umbrosa (Ginsburg 1939) Marino. IUCN (2010) (Grupo III: ID: 46)
- Chriolepis minutilla (Gilbert 1892) *Endémico. Marino. IUCN (2010) (Grupo III: ID: 46)
- Chriolepis semisquamata (Rutter 1904) Marino. IUCN (2010) (Grupo III: ID: 46)
- Chriolepis zebra (Ginsburg 1938) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 46)
- Coryphopterus urospilus (Ginsburg 1938) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 45 y 46)
- Elacatinus puncticulatus (Ginsburg 1938) Marino. (Grupo III: ID: 46)
- Gobiosoma chiquita (Jenkins y Evermann 1889) Salobres marinas. (Grupo III:
 ID: 46, 48 y 50)
- Gobiosoma paradoxum (Günther 1861) Salobres marinas. (Grupo III: ID: 46, 60, 93 y 96)
- Gobiosoma seminudum (Günther 1861) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 84)
- Gobulus crescentalis (Gilbert 1892) Marino. (Grupo III: ID: 45 y 46)
- Gymneleotris seminuda (Günther 1864) Marino. (Grupo III: ID: 45)

- Microgobius brevispinis (Ginsburg 1939) Salobres marinas. (Grupo III: ID: 44 y
- Microgobius cyclolepis (Gilbert 1890) Salobres marinas. (Grupo III: ID: 45)
- Microgobius emblematicus (Jordan y Gilbert 1882) Salobres marinas. (Grupo III:
 ID: 55 y 96)
- Microgobius miraflorensis (Gilbert y Starks 1904) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 54, 67, 68, 69, 72, 73, 74 y 78)
- Microgobius tabogensis (Meek y Hildebrand 1928) Salobres marinas. (Grupo III:
 ID: 45, 58, 73, 84, 93 y 94)
- Lythrypnus dalli (Gilbert 1890) Marino. (Grupo III: ID: 45 y 46)
- Lythrypnus pulchellus (Ginsburg 1938) Marino. (Grupo III: ID: 45 y 46)
- Parrella maxillaris (Ginsburg 1938) Marino. (Grupo III: ID: 46)
- Parrella lucretiae (Eigenmann y Eigenmann 1888) Salobres marinas. (Grupo III:
 ID: 73 y 84)
- Ophiogobius jenynsi (Hoese 1976) Salobres marinas. (Grupo IV: ID: 98 y 101)
- Rhinogobiops nicholsii (Bean 1882) Marino. IUCN (2024) (Grupo II: ID: 28 y 32)
- Tigrigobius digueti (Pellegrin 1901) Marino. (Grupo III: ID: 46)

Subfamilia Microdesminae Regan 1912

- Cerdale ionthas (Jordan y Gilbert 1882) Salobres marinas. IUCN (2010) (Grupo III: ID: 92 y 93)
- Cerdale paludicola (Dawson 1974) Salobres marinas. IUCN (2010) (Grupo III: ID: 92)
- Microdesmus dipus (Günther 1864) Salobres marinas. IUCN (2010) (Grupo III:
 ID: 46, 58 y 65)
- *Microdesmus dorsipunctatus* (Dawson 1968) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 45, 55, 61, 75, 77 y 78)
- Microdesmus suttkusi (Gilbert 1966) Salobres marinas. IUCN (2010) (Grupo III:
 ID: 58 y 78)

Orden Syngnathiformes

Suborden Mulloidei

Familia Mullidae Rafinesque 1815

- Mulloidichthys dentatus (Gill 1862) Marino. (Grupo III: ID: 45, 46, 47 y 53)
- Pseudupeneus grandisquamis (Gill 1863) Marino. (Grupo II: ID: 40, Grupo III:
 ID: 44, 45, 46, 47, 51, 53, 58, 74, 84, 89, 92, 93, 95 y 96)

Suborden Callionymoidei

Familia Callionymidae Bonaparte 1831

• Synchiropus atrilabiatus (Garman 1899) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 46)

Suborden Syngnathoidei

Familia Fistulariidae Stark 1828

- Fistularia commersonii (Rüppell 1838) Marino. (Grupo III: ID: 45, 46, 75 y 84)
- Fistularia corneta (Gilbert y Starks 1904) Marino. (Grupo III: ID: 46, 47 y 92)

Familia Syngnathidae Bonaparte 1831

Subfamilia Syngnathinae Bonaparte 1831

- Cosmocampus arctus (Jenkins y Evermann 1889) Marino. (Grupo II: ID: 33, 40, 42, (Grupo III: ID: 43, 47 y 48)
- Hippocampus ingens (Girard 1858) Marino. (Grupo II: ID: 40, (Grupo III: ID: 43, 44, 45, 46, 47, 50, 58, 59, 71, 74, 75, 78, 84 y 95)
- Leptonotus blainvilleanus (Eydoux y Gervais 1837) Salobres marinas. (Grupo IV:
 ID: 101, 102, 103 y 104)
- Pseudophallus starksii (Jordan y Culver 1895) Dulceacuícolas Salobres. (Grupo III: ID: 46, 54, 61, 73, 74, 78 y 96)
- Syngnathus auliscus (Swain 1882) Salobres marinas. (Grupo II: ID: 38, 40,
 Grupo III: ID: 43, 44, 45, 46, 47, 48, 49, 50, 55, 72, 73, 92 y 93)
- Syngnathus carinatus (Gilbert 1892) *Endémico. Marino. (Grupo III: ID: 53)
- Syngnathus californiensis (Storer 1845) Marino. (Grupo II: ID: 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, Grupo III: ID: 44 y 45)

Orden Scombriformes

Suborden Stromateoidei

Familia Centrolophidae Bonaparte 1846

- Icichthys lockingtoni (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 28)
- Seriolella porosa (Guichenot 1848) Marino. (Grupo IV: ID: 101)

Familia Nomeidae Günther 1860

- Cubiceps pauciradiatus (Günther 1872) Marino. (Grupo III: ID: 45)
- Nomeus gronovii (Gmelin 1789) Marino. (Grupo IV: ID: 98)

Familia Stromateidae Rafinesque 1810

- Peprilus medius (Peters 1869) Marino. (Grupo III: ID: 46, 85 y 92)
- Peprilus ovatus (Horn 1970) Marino. (Grupo III: ID: 87)
- Peprilus simillimus (Ayres 1860) Marino. (Grupo II: ID: 26, 32, 33, 34, 37, 38 y
 Grupo III: ID: 45)
- Peprilus snyderi (Gilbert y Starks 1904) Marino. (Grupo III: ID: 45, 58, 80, 81, 82, y 83)
- Stromateus stellatus (Cuvier 1829) Marino. (Grupo IV: ID: 100, 101, 103 y 104)

Suborden Scombroidei

Familia Scombridae Rafinesque 1815

Subfamilia Scombrinae Rafinesque 1815

- Auxis brachydorax (Collette y Aadland 1996) Marino. (Grupo III: ID: 51)
- Auxis eudorax (Collette y Aadland 1996) Marino. (Grupo III: ID: 85)
- Euthynnus lineatus (Kishinouye 1920) Marino. (Grupo III: ID: 45, 46, 47, 79, 82 y 83)
- Katsuwonus pelamis (Linnaeus 1758) Marino. (Grupo III: ID: 82)
- Sarda chiliensis (Cuvier 1832) Marino. (Grupo II: ID: 37 y Grupo III: ID: 45)
- Scomber japonicus (Houttuyn 1782) Marino. (Grupo II: ID: 40, 41, 42, Grupo III: ID: 43, 44, 45, 46, 47, 48 y Grupo IV: ID: 101)
- Scomberomorus concolor (Lockington 1879) Salobres marinas. (Grupo III: ID: 46 y 47)
- Scomberomorus sierra (Jordan y Starks 1895) Marino. (Grupo III: ID: 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 58, 69, 73, 74, 78, 79, 80, 81, 82, 83, 85, 87, 90, 92 y 93)

- Thunnus albacares (Bonnaterre 1788) Marino. (Grupo III: ID: 83)
- Thunnus obesus (Lowe 1839) Marino. (Grupo III: ID: 83)

Familia Bramidae Bonaparte 1831

• Brama japonica (Hilgendorf 1878) Marino. (Grupo II: ID: 26)

Familia Gempylidae Gill 1862

• Leionura atun (Euphrasen 1791) Marino. (Grupo IV: ID: 101)

Familia Trichiuridae Rafinesque 1810

Subfamilia Trichiurinae Rafinesque 1810

• Trichiurus nitens (Garman 1899) Marino. (Grupo III: ID: 58 y 78)

Orden Carangiformes

Suborden Centropomoidei

Familia Centropomidae Poey 1967

- Centropomus armatus (Gill 1863) Salobres marinas. (Grupo III: ID: 46, 54, 55, 60, 71, 73, 74, 75, 78, 86, 87, 88, 90, 91, 92, 93, 94 y 95)
- Centropomus medius (Günther 1864) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 45, 46, 47, 56, 57, 58, 71, 73, 74, 77, 78, 86, 87, 88, 89, 90, 91, 92, 93 y 95)
- Centropomus nigrescens (Günther 1864) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 45, 46, 47, 52, 53, 54, 55, 58, 59, 61, 63, 65, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 87, 88, 89, 90, 93 y 97)
- Centropomus robalito (Jordan y Gilbert 1882) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 46, 51, 53, 54, 55, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 87, 88, 89, 92, 93, 94, 95 y 96)
- Centropomus unionensis (Bocourt 1868) Salobres marinas. (Grupo III: ID: 55, 73, 74, 82, 83, 86, 88, 89, 90, 91, 94, 95 y 96)
- Centropomus viridis (Lockington 1877) Dulceacuícolas-salobres-marinas. IUCN (2020): Preocupación menor (Grupo III: ID: 46, 47, 55, 60, 74, 75, 76, 77, 78, 82, 85, 86, 87, 88, 90, 92, 93 y 96)

Familia Sphyraenidae Rafinesque 1815

Sphyraena argentea (Girard 1854) Marino. (Grupo II: ID: 38, 40, Grupo III: ID: 44, 45 y 47)

- Sphyraena ensis (Jordan y Gilbert 1882) Salobres marinas. (Grupo II: ID: 45, 46, 51, 58, 65, 69, 74, 75, 82, 85, 86, 90, 92 y 93)
- Sphyraena idiastes (Heller y Snodgrass 1903) Marino. IUCN (2020):
 Preocupación menor (Grupo IV: ID: 98)
- Sphyraena lucasana (Gill 1863) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 44)

Suborden Pleuronectoidei

Familia Polynemidae Rafinesque 1815

- Polydactylus approximans (Lay y Bennett 1839) Salobres marinas. (Grupo II: ID: 38, Grupo III: ID: 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 69, 70, 71, 72, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 88, 90, 92, 93 y 95)
- Polydactylus opercularis (Gill 1863) Salobres marinas. (Grupo II: ID: 42, Grupo III: ID: 45, 56, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 90, 92, 93 y 95)

Familia Cyclopsettidae Campbell et al. 2019

- Citharichthys fragilis (Gilbert 1890) Marino. (Grupo III: ID: 45 y 51)
- Citharichthys gilberti (Jenkins y Evermann 1889) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 44, 45, 46, 47, 51, 54, 55, 57, 61, 65, 69, 71, 73, 74, 75, 77, 78, 84, 88, 89, 90, 91, 92, 93, 94 y 96)
- Citharichthys platophrys (Gilbert 1891) Marino. (Grupo III: ID: 45, 46, 92 y 93)
- Citharichthys sordidus (Girard 1854) Marino. (Grupo II: ID: 16, 21, 22, 24, 28, 31, 32, 33, 41, 42, Grupo III: ID: 45 y 53)
- Citharichthys stigmaeus (Jordan y Gilbert 1882) Marino. (Grupo II: ID: 16, 19, 21, 22, 23, 24, 26, 28, 30, 31, 32, 33, 34, 35, 37, 40, 41, 42, Grupo III: ID: 45, 47 y 71)
- Citharichthys xanthostigma (Gilbert 1890) Marino. (Grupo II: ID: 42, Grupo III: ID: 45 y 47)
- *Cyclopsetta panamensis* (Steindachner 1875) **Salobres marinas**. (**Grupo** III: **ID**: 44, 45, 46, 47, 48, 84, 85 y 96)
- Cyclopsetta querna (Jordan y Bollman 1890) Salobres marinas. (Grupo III: ID: 46, 48, 49, 51, 65, 69, 72, 73, 79, 82, 83, 89, 92 y 96)

- Etropus crossotus (Jordan y Gilbert 1882) Salobres marinas. IUCN (2015):
 Preocupación menor (Grupo III: ID: 44, 45, 46, 47, 48, 49, 51, 55, 65, 74, 84, 87, 92 y 96)
- Etropus ectenes (Jordan 1889) Salobres marinas. (Grupo III: ID: 96)
- Etropus peruvianus (Hildebrand 1946) Marino. (Grupo III: ID: 45, 46, 51, 54, 59 y 73)
- Syacium latifrons (Jordan y Gilbert 1882) Marino. IUCN (2021): Preocupación menor (Grupo III: ID: 45, 46, 70, 71, 73, 74 y 90)
- Syacium maculiferum (Garman 1899) Marino. IUCN (2021) (Grupo III: ID: 45, 46 y 47)
- Syacium ovale (Günther 1864) Marino. (Grupo III: ID: 45, 46, 47, 50, 51, 52, 53, 58, 74, 90 y 96)

Familia Bothidae Smitt 1892

- Bothus constellatus (Jordan 1889) Marino. (Grupo III: ID: 44, 45, 46 y 47)
- Bothus leopardinus (Günther 1862) Marino. IUCN (2020): Preocupación menor (Grupo III: ID: 45, 51 y 58)
- Perissias taeniopterus (Gilbert 1890) Marino. (Grupo III: ID: 44 y 46)

Familia Paralichthyidae Regan 1910

- Ancylopsetta dendritica (Gilbert 1890) Marino. (Grupo III: ID: 44 y 45)
- Hippoglossina bollmani (Gilbert 1890) Marino. (Grupo III: ID: 46 y 93)
- Hippoglossina macrops (Steindachner 1876) Marino. (Grupo IV: ID: 101 y 102)
- Hippoglossina stomata (Eigenmann y Eigenmann 1890) Marino. (Grupo II: ID: 41, Grupo III: ID: 44, 45 y 49)
- Hippoglossina tetrophthalma (Gilbert 1890) Marino. (Grupo III: ID: 44, 45, 46 y
 47)
- Paralichthys adspersus (Steindachner 1867) Marino. (Grupo IV: ID: 98)
- Paralichthys aestuarius (Gilbert y Scofield 1898) Salobres marinas. (Grupo III:
 ID: 43, 47, 49, 52 y 53)
- Paralichthys californicus (Ayres 1859) Salobres marinas. (Grupo II: ID: 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, Grupo III: ID: 43, 44, 45, 46, 47, 49 y 59)

- Paralichthys microps (Günther 1881) Marino. (Grupo IV: ID: 101)
- Paralichthys woolmani (Jordan y Williams 1897) Salobres marinas. (Grupo III:
 ID: 44, 45, 46, 47, 49, 50, 51 y 58)
- Xystreurys liolepis (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 40, 41, 42,
 Grupo III: ID: 45 y 53)

Familia Pleuronectidae Rafinesque 1815

Subfamilia Pleuronichthyinae Vinnikov, Thomson y Munroe 2018

- Pleuronichthys coenosus (Girard 1854) Marino. (Grupo II: ID: 24, 34, 40 y Grupo III: ID: 45)
- Pleuronichthys decurrens (Jordan y Gilbert 1881) Marino. (Grupo II: ID: 28, 31, 32, 33 y 42)
- Pleuronichthys guttulatus (Girard 1856) Salobres marinas. (Grupo II: ID: 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, Grupo III: ID: 43, 44, 45, 48, 49, 51 y 53)
- Pleuronichthys ocellatus (Starks y Thompson 1910) Marino. (Grupo III: ID: 45, 47 y 51)
- Pleuronichthys ritteri (Starks y Morris 1907) Marino. (Grupo II: ID: 34, 35, 38, 40, 41, 42, Grupo III: ID: 44, 45, 48 y 49)
- Pleuronichthys verticalis (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 32, 37, 40, 41, 42, Grupo III: ID: 44, 45, 47, 48 y 49)

Subfamilia Hippoglossinae Gill 1864

- Eopsetta jordani Lockington (1879) Marino. (Grupo II: ID: 28)
- Hippoglossus stenolepis (Schmidt 1904) Marino. (Grupo II: ID: 15)
- Lyopsetta exilis (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 15 y 32)

Subfamilia Pleuronectinae Rafinesque 1815

- Isopsetta isolepis (Lockington 1880) Marino. (Grupo II: ID: 15, 17, 18, 19, 21, 28 y 30)
- Lepidopsetta bilineata (Ayres 1855) Marino. (Grupo I: ID: 8, 9, 11, Grupo II: ID: 24, 26 y 42)
- Liopsetta glacialis (Pallas 1776) **Dulceacuícolas-salobres-marinas.** (**Grupo** I: **ID**: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 y 13)
- Limanda aspera (Pallas 1814) Marino. (Grupo I: ID: 8, 9, 11 y Grupo II: ID: 15)

- Myzopsetta proboscidea (Gilbert 1896) Salobres marinas. (Grupo I: ID: 5, 6, 7, 8, 9 y 11)
- Parophrys vetulus (Girard 1854) Marino. (Grupo II: ID: 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 40 y 42)
- Psettichthys melanostictus (Girard 1854) Marino. (Grupo II: ID: 14, 16, 17, 19, 21, 22, 23, 24, 26, 28, 32, 33 y 34)
- Platichthys stellatus (Pallas 1787) Dulceacuícolas-salobres-marinas. (Grupo I: ID: 5, 6, 7, 8, 9, 10, 11, 12, 13, Grupo II: ID: 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, y 35)
- Pleuronectes quadrituberculatus (Pallas 1814) Salobres marinas. (Grupo I: ID: 8,
 9, 11, Grupo II: ID: 14 y 15)

Familia Achiridae Rafinesque 1815

- Achirus klunzingeri (Steindachner 1880) Marino. (Grupo III: ID: 63, 69, 92, 93 y
 96)
- Achirus mazatlanus (Steindachner 1869) **Dulceacuícolas-salobres-marinas.** (**Grupo** III: **ID**: 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 63, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 82, 91, 92, 93, 94 y 96)
- Achirus scutum (Günther 1862) Salobres marinas. (Grupo III: ID: 54, 56, 69, 70, 72, 73, 74, 75, 78, 89, 90 y 92)
- Achirus zebrinus (Clark 1936) Marino. (Grupo III: ID: 71, 72, 73 y 74)
- Trinectes fimbriatus (Günther 1862) Dulceacuícolas-salobres-marinas. IUCN
 (2022): Preocupación menor (Grupo III: ID: 73, 74 y 78)
- Trinectes fonsecensis (Günther 1862) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 46, 54, 55, 59, 61, 65, 69, 73, 74, 77, 78, 89, 92, 93 y 96)
- Trinectes fluviatilis (Meek y Hildebrand 1928) Dulceacuícolas-salobres-marinas.
 IUCN (2022): Preocupación menor (Grupo III: ID: 92 y 96)

Familia Cynoglossidae Jordan 1888

Subfamilia Symphurinae Ochiai 1963

• *Symphurus atricauda* (Jordan y Gilbert 1880) **Marino.** (**Grupo** II: **ID**: 28, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, **Grupo** III: **ID**: 44, 45, 46, 47, 48, 54, 55, 57, 59, 84, 92 y 96)

- Symphurus atramentatus (Jordan y Bollman 1890) Marino. (Grupo III: ID: 45, 46, 47 y 49)
- Symphurus chabanaudi (Mahadeva y Munroe 1990) Salobres marinas. (Grupo III: ID: 51, 55, 58, 74 y 78)
- Symphurus elongatus (Günther 1868) Salobres marinas. (Grupo III: ID: 55, 72, 73, 74, 84, 92 y 93)
- Symphurus fasciolaris (Gilbert 1892) Marino. (Grupo III: ID: 45, 47, 49, 51 y 52)
- Symphurus gorgonae (Chabanaud 1948) Marino. (Grupo III: ID: 46)
- Symphurus oligomerus (Mahadeva y Munroe 1990) Marino. (Grupo III: ID: 46)
- Symphurus leei (Jordan y Bollman 1890) Marino. IUCN (2021): Preocupación menor (Grupo III: ID: 51 y 55)
- Symphurus melanurus (Clark 1936) Salobres marinas. IUCN (2021): Preocupación menor (Grupo III: ID: 74, 90, 92, 93 y 96)

Suborden Nematistioidei

Familia Nematistiidae Gill 1862

• Nematistius pectoralis (Gill 1862) Marino. (Grupo III: ID: 45, 46, 47, 48, 51, 52, 54, 55, 58, 59, 74, 78 y 82)

Suborden Carangoidei

Familia Carangidae Rafinesque 1815

Subfamilia Naucratinae Bleeker 1859

- Seriola dorsalis (Gill 1863) **Salobres marinas**. (**Grupo** III: **ID**: 44, 45, 46, 47 y 92) **Subfamilia** Caranginae Rafinesque 1815
 - Alectis ciliaris (Bloch 1787) Marino. (Grupo III: ID: 46)
 - Caranx caballus (Günther 1868) Salobres marinas. (Grupo III: ID: 45, 46, 47, 51, 58, 59, 65, 69, 71, 73, 74, 78, 79, 80, 81, 82, 83, 84, 85, 87, 92 y 93)
 - Caranx caninus (Günther 1867) **Dulceacuícolas-salobres-marinas**. **IUCN (2010): Preocupación menor (Grupo** III: **ID**: 43, 45, 46, 47, 51, 52, 53, 54, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 96 y 97)
 - Caranx melampygus (Cuvier 1833) Salobres marinas. (Grupo III: ID: 45 y 69)

- Caranx sexfasciatus (Quoy y Gaimard 1825) **Dulceacuícolas-salobres-marinas.** (**Grupo** III: **ID**: 45, 46, 47, 58, 60, 65, 69, 73, 74, 78, 90 y 91)
- Caranx vinctus (Jordan y Gilbert 1882) **Dulceacuícolas-salobres-marinas.** (**Grupo** III: **ID**: 45, 46, 47, 48, 51, 56, 58, 70, 71, 73, 74, 78, 80, 81, 82, 87 y 88)
- Chloroscombrus orqueta (Jordan y Gilbert 1883) Salobres marinas. (Grupo III:
 ID: 45, 46, 47, 48, 49, 51, 55, 58, 59, 73, 74, 83, 84, 87, 91, 92, 93 y 95)
- Decapterus macarellus (Cuvier 1833) Marino. (Grupo III: ID: 46)
- Decapterus macrosoma (Bleeker 1851) Marino. (Grupo III: ID: 45)
- Decapterus muroadsi (Temminck y Schlegel 1844) Marino. (Grupo III: ID: 45)
- Euprepocaranx dorsalis (Gill 1863) Marino. (Grupo III: ID: 45, 46, 47, 51, 55 y
 78)
- Gnathanodon speciosus (Forsskål 1775) Marino. (Grupo III: ID: 45, 46, 47, 73 y
 74)
- Hemicaranx leucurus (Günther 1864) Salobres marinas. (Grupo III: ID: 45, 46, 73, 74, 78, 84, 92, 93 y 95)
- Hemicaranx zelotes (Gilbert 1898) Salobres marinas. (Grupo III: ID: 45, 46, 47, 73, 74, 78, 82, 83 y 92)
- Selar crumenophthalmus (Bloch 1793) Marino. (Grupo III: ID: 45, 46, 58, 59 y 82)
- Selene brevoortii (Gill 1863) Marino. (Grupo III: ID: 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 58, 69, 71, 72, 73, 74, 78, 82, 83, 84, 87, 89, 90, 91, 92, 93, 94 y 96)
- Selene peruviana (Guichenot 1866) **Marino.** (**Grupo** III: **ID**: 45, 46, 47, 51, 53, 58, 73, 74, 78, 83, 84, 85, 86 y 92)
- Paraselene orstedii (Lütken 1880) Marino. (Grupo III: ID: 54, 55, 58, 74, 78, 84, 90, 92 y 95)
- Trachurus murphyi (Nichols 1920) Marino. IUCN (2010) (Grupo IV: ID: 101)
- Trachurus symmetricus (Ayres 1855) Marino. (Grupo II: ID: 33, 34, 40, Grupo III: ID: 44, 45 y 46)

Subfamilia Scomberoidinae Jordan y Gilbert 1883

- Oligoplites altus (Günther 1868) Salobres marinas. (Grupo III: ID: 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 65, 69, 71, 72, 73, 74, 75, 76, 77, 78, 86, 87, 88, 89, 90, 91, 92, 93 y 96)
- Oligoplites inornatus (Gill 1863) **Salobres marinas.** (**Grupo** III: **ID**: 44, 45, 46, 47, 51, 52, 53, 54, 55, 58, 65, 68, 71, 72, 73, 74, 75, 76, 77, 78, 82, 83, 87, 88, 89, 90 y 96)
- Oligoplites refulgens (Gilbert y Starks 1904) Salobres marinas. (Grupo III: ID: 46, 51, 55, 58, 69, 72, 73, 74, 90, 92, 93 y 96)

Subfamilia Trachinotinae Gill 1861

- *Trachinotus kennedyi* (Steindachner 1875) **Salobres marinas.** (**Grupo** III: **ID**: 44, 45, 46, 51, 52, 53, 54, 55, 58, 78, 84, 88, 90, 92 y 95)
- Trachinotus paitensis (Cuvier 1832) Marino. (Grupo III: ID: 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 73, 74, 90, 92, 95 y 97)
- Trachinotus rhodopus (Gill 1863) Marino. (Grupo III: ID: 44, 45, 46, 47, 51, 54, 55, 56, 60, 62, 64, 65, 69, 74, 75, 78, 80, 81, 82, 87, 90, 92 y 93)

Familia Coryphaenidae Rafinesque 1815

• Coryphaena hippurus (Linnaeus 1758) Marino. IUCN (2010): Preocupación menor (Grupo IV: ID: 98)

Orden Atheriniformes

Familia Atherinopsidae Fitzinger 1873

Subfamilia Atherinopsinae Fitzinger 1873

- Atherinops affinis (Ayres 1860) Dulceacuícolas-salobres-marinas. (Grupo II: ID: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, Grupo III: ID: 43, 44, 45 y 51)
- Atherinopsis californiensis (Girard 1854) Marino. (Grupo II: ID: 22, 26, 28, 29, 30, 31, 32, 33, 34, 35, 39, 40, 42, Grupo III: ID: 43, 44, 45 y 47)
- Basilichthys australis (Eigenmann 1928) Dulceacuícola. (Grupo IV: ID: 101)
- Colpichthys regis (Jenkins y Evermann 1889) Marino. (Grupo III: ID: 48, 49, 52 y 53)

- Odontesthes nigricans (Richardson 1848) Dulceacuícolas-salobres-marinas.
 (Grupo IV: ID: 101)
- Odontesthes regia (Humboldt 1821) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 96, Grupo IV: ID 98, 99, 101, 103 y 104)
- Odontesthes smitti (Lahille 1929) Marino. (Grupo IV: ID: 101)
- Leuresthes sardina (Jenkins y Evermann 1889) Marino. (Grupo III: ID: 48, 49 y 51)
- Leuresthes tenuis (Ayres 1860) Marino. (Grupo II: ID: 38, 40 y Grupo III: ID: 45)

Subfamilia Menidiinae Schultz 1948

- Atherinella argentea (Chernoff 1986) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 87, 89 y 90)
- Atherinella crystallina (Jordan y Culver 1895) **Dulceacuícolas Salobres**. (**Grupo** III: **ID**: 54, 65, 66, 67, 68 y 69)
- Atherinella eriarcha (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 46 y 87)
- Atherinella guatemalensis (Günther 1864) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 63, 72, 73, 74, 75, 76, 77, 78 y 88)
- Atherinella nepenthe (Myers y Wade 1942) Marino. (Grupo III: ID: 96)
- Atherinella pachylepis (Günther 1864) Salobres marinas. (Grupo III: ID: 87, 92, 93 y 96)
- Atherinella panamensis (Steindachner 1875) Marino. (Grupo III: ID: 61, 63, 74 y
 87)
- Atherinella serrivomer (Chernoff 1986) Salobres marinas. (Grupo III: ID: 91, 94 y 96)
- Membras gilberti (Jordan y Bollman 1890) Salobres marinas. (Grupo III: ID: 74, 75, 78 y 92)
- Menidia audens (Hay 1882) Dulceacuícola. (Grupo II: ID: 32)

Orden Beloniformes

Familia Belonidae Bonaparte 1835

- Ablennes hians (Valenciennes 1846) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 46)
- Strongylura exilis (Girard 1854) Dulceacuícolas-salobres-marinas. (Grupo II: ID: 40, 41, 42, Grupo III: ID: 43, 44, 45, 46, 47, 48, 49, 51, 54, 55, 57, 58, 59, 73, 74, 75, 78, 89, 92, 93 y 96)
- Strongylura scapularis (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 91, 92, 93 y 96)
- Tylosurus fodiator (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 55, 65, 69, 74, 78 y 87)
- Tylosurus pacificus (Steindachner 1875) Marino. (Grupo III: ID: 45, 82, 88 y 95) Familia Hemiramphidae Gill 1859
 - Hemiramphus saltator (Gilbert y Starks 1904) Marino. (Grupo III: ID: 45 y 46)
 - Hyporhamphus gilli (Meek y Hildebrand 1923) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 73, 92 y 93)
 - Hyporhamphus naos (Banford y Collette 2001) Salobres marinas. (Grupo III: ID: 45, 46, 47, 58, 73, 74, 75, 77, 78, 92 y 93)
 - *Hyporhamphus rosae* (Jordan y Gilbert 1880) **Dulceacuícolas-salobres-marinas**. (**Grupo** II: **ID**: 40, 41, **Grupo** III: **ID**: 43, 44, 45, 46, 47, 48, 56, 73, 74, 89 y 92)
 - Hyporhamphus snyderi (Meek y Hildebrand 1923) Marino. (Grupo III: ID: 73, 78 y 91)

Familia Exocoetidae Risso 1827

• Cypselurus callopterus (Günther 1866) Marino. (Grupo III: ID: 45 y 46)

Orden Cyprinodontiformes

Suborden Cyprinodontoidei

Familia Fundulidae Günther 1866

Fundulus parvipinnis (Girard 1854) Dulceacuícolas-salobres-marinas. (Grupo II:
 ID: 34, 35, 37, 38, 40, 41, 42, Grupo III: ID: 43, 44 y 45)

Familia Poeciliidae Bonaparte 1831

Subfamilia Poeciliinae Bonaparte 1831

- Poecilia butleri (Jordan 1889) Dulceacuícolas Salobres. (Grupo III: ID: 54 y 55)
- Poecilia nelsoni (Meek 1904) Dulceacuícolas Salobres. (Grupo III: ID: 57, 60, 63, 64, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78 y 79)
- Poecilia sphenops (Valenciennes 1846) Dulceacuícolas Salobres. (Grupo III: ID: 65, 66, 67, 68, 69, 74, 75, 76, 77, 78 y 82)
- Poeciliopsis elongata (Günther 1866) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 87 y 90)
- Poeciliopsis fasciata (Meek 1904) Dulceacuícolas Salobres. (Grupo III: ID: 66, 67, 68, 72, 73, 74, 75, 76, 77 y 78)
- Poeciliopsis latidens (Garman 1895) Dulceacuícola. (Grupo III: ID: 54)
- Poeciliopsis pleurospilus (Günther 1866) Dulceacuícola. (Grupo III: ID: 74, 75, 76, 77 y 78)
- Poeciliopsis turrubarensis (Meek 1912) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 58, 65, 67, 68, 74, 75, 76, 77, 78, 90, 91, 92 y 96)
- Priapichthys chocoensis (Henn 1916) Dulceacuícola. (Grupo III: ID: 92)

Familia Anablepidae Bonaparte 1831

Subfamilia Anablepinae Bonaparte 1831

Anableps dowii (Gill 1861) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 74, 75, 76 y 78)

Subfamilia Oxyzygonectinae Parenti 1981

• Oxyzygonectes dovii (Günther 1866) **Dulceacuícolas Salobres.** (**Grupo** III: **ID**: 87, 88, 89 y 90)

Orden Cichliformes

Familia Cichlidae Bonaparte 1835

Subfamilia Cichlinae Bonaparte 1835

• Astatheros macracanthus (Günther 1864) **Dulceacuícola**. **IUCN (2019): Preocupación menor (Grupo** III: **ID**: 72, 73, 74, 75, 76, 77, 78, 79 y 82)

- Amphilophus trimaculatus (Günther 1867) **Dulceacuícola.** (**Grupo** III: **ID**: 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78 y 79)
- Andinoacara rivulatus (Günther 1860) Dulceacuícola. (Grupo III: ID: 96 y 97)

Orden Mugiliformes

Familia Mugilidae Jarocki 1822

- Chaenomugil proboscideus (Günther 1861) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 92 y 93)
- Dajaus monticola (Bancroft 1834) Dulceacuícolas-salobres-marinas. (Grupo III:
 ID: 55, 61, 62, 63, 78, 89 y 90)
- Mugil cephalus (Linnaeus 1758) Dulceacuícolas-salobres-marinas. (Grupo II: ID: 35, 37, 38, 40, 41, 42, Grupo III: ID: 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 82, 83, 85, 87, 91, 92, 93, 94, 95, 96 y 97)
- Mugil hospes (Jordan y Culver 1895) Salobres marinas. (Grupo III: ID: 48, 52, 53, 54, 58, 72, 73, 74, 75, 77 y 78)
- Mugil setosus (Gilbert 1892) Marino. (Grupo III: ID: 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 87, 88, 89, 90, 92, 93, 94, 95, 96 y 97)
- Mugil thoburni (Jordan y Starks 1896) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 96)

Orden Blenniiformes

Familia Pomacentridae Bonaparte 1831

Subfamilia Microspathodontinae Jordan y Evermann 1898

- Hypsypops rubicundus (Girard 1854) Marino. (Grupo II: ID: 41, Grupo III: ID: 43, 44 y 45)
- Microspathodon dorsalis (Gill 1862) Marino. (Grupo III: ID: 46 y 47)
- Stegastes flavilatus (Gill 1862) Marino. (Grupo III: ID: 45, 46 y 75)
- Stegastes leucorus (Gilbert 1892) Marino. IUCN (2010): Vulnerable (Grupo III: ID: 87)

• Stegastes rectifraenum (Gill 1862) Marino. (Grupo III: ID: 45, 46 y 47)

Subfamilia Chrominae Bonaparte 1831

- Azurina atrilobata (Gill 1862) Marino. (Grupo III: ID: 45 y 46)
- Chromis alta (Greenfield y Woods 1980) Marino. (Grupo III: ID: 45)
- Chromis limbaughi (Greenfield y Woods 1980) Marino. (Grupo III: ID: 46)

Subfamilia Glyphisodontinae Rafinesque 1815

- Abudefduf concolor (Gill 1862) Marino. (Grupo III: ID: 47, 55 y 65)
- Abudefduf troschelii (Gill 1862) Marino. (Grupo III: ID: 45, 46, 47, 75, 78, 87 y
 93)

Familia Embiotocidae Agassiz 1853

- Amphistichus argenteus (Agassiz 1854) Marino. (Grupo II: ID: 32, 33 y 35)
- Amphistichus koelzi (Hubbs 1933) Marino. (Grupo II: ID: 28 y 32)
- Amphistichus rhodoterus (Agassiz 1854) Salobres marinas. (Grupo II: ID: 18, 19, 20, 21, 22, 23, 24, 25, 26, 28 y 32)
- Brachyistius frenatus (Gill 1862) Marino. (Grupo II: ID: 16 y 30)
- *Cymatogaster aggregata* (Gibbons 1854) **Dulceacuícolas-salobres-marinas**. (**Grupo** II: **ID**: 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 y 42)
- Embiotoca caryi (Agassiz 1853) Marino. (Grupo II: ID: 32, 33, 34 y 37)
- Embiotoca jacksoni (Agassiz 1853) Marino. (Grupo II: ID: 30, 31, 32, 33, 34, 35, 37, 38, 40 y 42)
- Embiotoca lateralis (Agassiz 1854) Marino. (Grupo II: ID: 17, 21, 22, 24, 26, 28, 34 y 41)
- Hypocritichthys analis (Agassiz 1861) Marino. (Grupo II: ID: 19, 28 y 33)
- Hyperprosopon argenteum (Gibbons 1854) Marino. (Grupo II: ID: 18, 20, 21, 22, 23, 24, 25, 28, 30, 31, 32, 33, 34, 37 y 42)
- Hyperprosopon ellipticum (Gibbons 1854) Marino. (Grupo II: ID: 17, 21, 22, 24, 26 y 28)
- Hysterocarpus traskii (Gibbons 1854) Dulceacuícolas Salobres. (Grupo II: ID:
 32)

- Micrometrus aurora (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 33)
- Micrometrus minimus (Gibbons 1854) Marino. (Grupo II: ID: 30, 31, 32, 33, 34, 40 y 42)
- Phanerodon atripes (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 34)
- Phanerodon furcatus (Girard 1854) Marino. (Grupo II: ID: 21, 22, 23, 24, 26, 28, 32, 33, 34, 37, 38, 40 y 42)
- Phanerodon vacca (Girard 1855) Marino. (Grupo II: ID: 16, 17, 21, 22, 24, 26, 28, 30, 31, 32, 33, 34, 37, 38 y 42)
- Rhacochilus toxotes (Agassiz 1854) Marino. (Grupo II: ID: 31, 32, 33, 34 y 42)

Familia Opistognathidae Bonaparte 1835

- Lonchopisthus sinuscalifornicus (Castro-Aguirre y Villavicencio-Garayzar 1988)
 Marino. (Grupo III: ID: 46)
- Opistognathus punctatus (Peters 1869) Marino. (Grupo III: ID: 44, 46 y 47)
- Opistognathus rhomaleus (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 45)
- Opistognathus rosenblatti (Allen y Robertson 1991) Marino. (Grupo III: ID: 46)

Suborder Gobiesocoidei

Familia Gobiesocidae Bleeker 1859

Subfamilia Gobiesocinae Bleeker 1859

- Arcos erythrops (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 45)
- Gobiesox adustus (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 92)
- Gobiesox juradoensis (Fowler 1944) Dulceacuícola. (Grupo III: ID: 93)
- Gobiesox marmoratus (Jenyns 1842) Marino. (Grupo IV: ID: 98, 99 y 101)
- Gobiesox maeandricus (Girard 1858) Marino. (Grupo II: ID: 32)
- Gobiesox papillifer (Gilbert 1890) Marino. (Grupo III: ID: 49)
- Gobiesox pinniger (Gilbert 1890) Marino. (Grupo III: ID: 45 y 47)
- Gobiesox rhessodon (Smith 1881) Marino. (Grupo III: ID: 45)
- Rimicola eigenmanni (Gilbert 1890) Marino. (Grupo III: ID: 45)
- Rimicola muscarum (Meek y Pierson 1895) Marino. (Grupo II: ID: 34 y 40)
- Sicyases sanguineus (Müller y Troschel 1843) Marino. (Grupo IV: ID: 98 y 101)
- Tomicodon boehlkei (Briggs 1955) Marino. (Grupo III: **ID**: 46)

- Tomicodon humeralis (Gilbert 1890) Marino. (Grupo III: ID: 46 y 47)
- Tomicodon zebra (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 45 y 46)

Suborden Blennioidei

Familia Tripterygiidae Whitley 1931

Subfamilia Tripterygiinae Whitley 1931

- Axoclinus nigricaudus (Allen y Robertson 1991) Marino. (Grupo III: ID: 46)
- Crocodilichthys gracilis (Allen y Robertson 1991) Marino. (Grupo III: ID: 46)
- Enneanectes carminalis (Jordan y Gilbert 1882) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 45 y 46)
- Enneanectes reticulatus (Allen y Robertson 1991) Marino. (Grupo III: ID: 46)
- Helcogrammoides cunninghami (Smitt 1898) Marino. (Grupo IV: ID: 100, 101 y 102)

Familia Blenniidae Rafinesque 1810

Subfamilia Blenniinae Rafinesque 1810

- Plagiotremus azaleus (Jordan y Bollman 1890) Marino. (Grupo III: ID: 45 y 46)
 Subfamilia Salariinae Gill 1859
 - Entomacrodus chiostictus (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 45 y 46)
 - Hypsoblennius brevipinnis (Günther 1861) Marino. (Grupo III: ID: 45 y 46)
 - Hypsoblennius gentilis (Girard 1854) Salobres marinas. (Grupo II: ID: 35, 37, 40, 41, 42, Grupo III: ID: 43, 44, 45, 46, 47 y 50)
 - Hypsoblennius jenkinsi (Jordan y Evermann 1896) Marino. (Grupo II: ID: 42 y Grupo III: ID: 45)
 - Hypsoblennius sordidus (Bennett 1828) Marino. (Grupo IV: ID: 98, 100 y 101)
 - Ophioblennius steindachneri (Jordan y Evermann 1898) Marino. (Grupo III: ID: 45 y 46)

Familia Clinidae Swainson 1839

- Gibbonsia elegans (Cooper 1864) Marino. (Grupo II: ID: 40)
- Gibbonsia metzi (Hubbs 1927) Marino. (Grupo II: ID: 30, 31, 32, 33 y 40)
- Gibbonsia montereyensis (Hubbs 1927) Marino. (Grupo II: ID: 34)

- Heterostichus rostratus (Girard 1854) Marino. (Grupo II: ID: 34, 35, 38, 40, 41 y
 42)
- Myxodes cristatus (Valenciennes 1836) Marino. (Grupo IV: ID: 101)
- Myxodes viridis (Valenciennes 1836) Marino. (Grupo IV: ID: 101)

Familia Labrisomidae Clark Hubbs 1952

- Calliclinus geniguttatus (Valenciennes 1836) Marino. (Grupo IV: ID: 101)
- Malacoctenus hubbsi (Springer 1959) Marino. (Grupo III: ID: 45 y 46)
- Labrisomus multiporosus (Hubbs 1953) Marino. (Grupo III: ID: 43, 45, 46 y 47)
- Labrisomus xanti (Gill 1860) Marino. (Grupo III: ID: 45, 46 y 47)
- Labrisomus wigginsi (Hubbs 1953) Marino. (Grupo III: ID: 45)
- Malacoctenus sudensis (Springer 1959) Marino. (Grupo III: ID: 47)
- Malacoctenus tetranemus (Cope 1877) Marino. (Grupo III: ID: 45)
- Paraclinus altivelis (Lockington 1881) Marino. (Grupo III: ID: 46 y 47)
- Paraclinus asper (Jenkins y Evermann 1889) Marino. (Grupo III: ID: 43, 44, 45, 46, 47 y 50)
- Paraclinus beebei (Hubbs 1952) Marino. (Grupo III: ID: 46)
- Paraclinus integripinnis (Smith 1880) Salobres marinas. (Grupo II: ID: 40, 42,
 Grupo III: ID: 44 y 45)
- Paraclinus magdalenae (Rosenblatt y Parr 1969) *Endémico. Marino. (Grupo III:
 ID: 45)
- Paraclinus mexicanus (Gilbert 1904) Marino. (Grupo III: ID: 46)
- *Paraclinus sini* (Hubbs 1952) **Marino.** (**Grupo** III: **ID**: 43, 45, 46 y 47)
- Paraclinus tanygnathus (Rosenblatt y Parr 1969) Marino. (Grupo III: ID: 46)
- Paraclinus walkeri (Hubbs 1952) *Endémico. Marino. (Grupo II: ID: 42)
- Starksia cremnobates (Gilbert 1890) *Endémico. Marino. (Grupo III: ID: 46)
- Stathmonotus sinuscalifornici (Chabanaud 1942) Marino. (Grupo III: ID: 45 y 46)
- Xenomedea rhodopyga (Rosenblatt y Taylor 1971) Marino. (Grupo III: ID: 46)

Familia Chaenopsidae Gill 1865

- Acanthemblemaria crockeri (Beebe y Tee-Van 1938) Marino. (Grupo III: ID: 46)
- Chaenopsis alepidota (Gilbert 1890) Marino. (Grupo III: ID: 45, 46 y 47)

- Cirriemblemaria lucasana (Stephens 1963) Marino. (Grupo III: ID: 46)
- Coralliozetus angelicus (Böhlke y Mead 1957) Marino. (Grupo III: ID: 46)
- Coralliozetus boehlkei (Stephens 1963) Marino. (Grupo III: ID: 46)
- Coralliozetus micropes (Beebe y Tee-Van 1938) Marino. (Grupo III: ID: 46)
- Emblemaria hypacanthus (Jenkins y Evermann 1889) Marino. (Grupo III: ID: 46)
- Neoclinus uninotatus (Hubbs 1953) Marino. (Grupo II: ID: 32 y 33)
- Protemblemaria bicirrus (Hildebrand 1946) Marino. (Grupo III: ID: 45 y 46)

Familia Dactyloscopidae Gill 1859

- Dactylagnus mundus (Gill 1863) Marino. (Grupo III: ID: 45, 46 y 47)
- Dactylagnus parvus (Dawson 1976) Marino. (Grupo III: ID: 45)
- Dactyloscopus amnis (Miller y Briggs 1962) Dulceacuícolas-salobres-marinas.
 IUCN (2019): Preocupación menor (Grupo III: ID: 61 y 76)
- Dactyloscopus byersorum (Dawson 1969) Marino. (Grupo III: ID: 47)
- Dactyloscopus lunaticus (Gilbert 1890) Marino. (Grupo III: ID: 46, 48, 77 y 78)
- Dactyloscopus pectoralis (Gill 1861) Marino. (Grupo III: ID: 46)
- Heteristius cinctus (Osburn y Nichols 1916) Marino. (Grupo III: ID: 45)

Orden Perciformes

Suborden Percoidei

Familia Serranidae Swainson 1839

- Diplectrum euryplectrum (Jordan y Bollman 1890) Marino. (Grupo III: ID: 46 y
 93)
- *Diplectrum labarum* (Rosenblatt y Johnson 1974) **Marino.** (**Grupo** III: **ID**: 44, 45, 46 y 47)
- Diplectrum macropoma (Günther 1864) Marino. (Grupo III: ID: 45, 46 y 92)
- Diplectrum maximum (Hildebrand 1946) Marino. (Grupo III: ID: 96)
- *Diplectrum pacificum* (Meek y Hildebrand 1925) **Marino.** (**Grupo** III: **ID**: 44, 45, 46, 47, 49, 50, 51, 53, 58, 69, 72, 73, 92, 93 y 96)
- Diplectrum rostrum (Bortone 1974) Marino. (Grupo III: ID: 44, 45, 46, 92 y 93)
- Diplectrum sciurus (Gilbert 1892) Marino. (Grupo III: ID: 45, 46 y 47)

- Paralabrax auroguttatus (Walford 1936) *Endémico. Marino. (Grupo III: ID: 44, 45, y 46)
- Paralabrax clathratus (Girard 1854) Marino. (Grupo II: ID: 35, 39, 40, 41, 42 y
 Grupo III: ID: 43)
- Paralabrax nebulifer (Girard 1854) Marino. (Grupo II: ID: 35, 36, 37, 38, 39, 40, 41, 42, Grupo III: ID: 43, 44 y 45)
- Paralabrax maculatofasciatus (Steindachner 1868) Marino. (Grupo II: ID: 37, 38, 40, 41, 42, Grupo III: ID: 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 y 53)
- Serranus aequidens (Gilbert 1890) Marino. (Grupo III: ID: 46)
- Serranus psittacinus (Valenciennes 1846) Marino. (Grupo III: ID: 44, 45 y 46)

Familia Anthiadidae Poey 1861

- Hemanthias peruanus (Steindachner 1875) Marino. (Grupo III: ID: 46)
 Familia Epinephelidae Bleeker 1874
 - Alphestes immaculatus (Breder 1936) Marino. (Grupo III: ID: 45, 46, 47 y 87)
 - Alphestes multiguttatus (Günther 1867) Marino. (Grupo III: ID: 44, 45, 74, 78, 84, 85 y 87)
 - Cephalopholis colonus (Valenciennes 1846) Marino. (Grupo III: ID: 45)
 - Cephalopholis panamensis (Steindachner 1876) Marino. (Grupo III: ID: 46, 47, 85 y 93)
 - Dermatolepis dermatolepis (Boulenger 1895) Marino. (Grupo III: ID: 74)
 - Epinephelus analogus (Gill 1863) Marino. (Grupo III: ID: 44, 45, 46, 55, 78, 83, 84, 86, 89, 92 y 93)
 - Epinephelus quinquefasciatus (Bocourt 1868) Marino. (Grupo III: ID: 44, 45, 46, 78 y 91)
 - Epinephelus labriformis (Jenyns 1840) Marino. (Grupo III: ID: 45, 46, 47, 49, 54, 75 y 92)
 - Hyporthodus acanthistius (Gilbert 1892) Marino. (Grupo III: ID: 46)
 - Hyporthodus exsul (Fowler 1944) Marino. (Grupo III: ID: 45)
 - Hyporthodus niphobles (Gilbert y Starks 1897) Marino. (Grupo III: ID: 45, 46 y
 47)

- Mycteroperca jordani (Jenkins y Evermann 1889) Marino. (Grupo III: ID: 44 y 45)
- Mycteroperca prionura (Rosenblatt y Zahuranec 1967) Marino. (Grupo III: ID: 46)
- Mycteroperca rosacea (Streets 1877) Marino. (Grupo III: ID: 45, 46 y 47)
- Mycteroperca xenarcha (Jordan 1888) Salobres marinas. (Grupo III: ID: 43, 44, 45, 78, 86 y 96)

Familia Grammistidae Bleeker 1857

- Rypticus bicolor (Valenciennes 1846) Marino. (Grupo III: ID: 45, 46, 54 y 58)
- Rypticus nigripinnis (Gill 1861) Marino. (Grupo III: ID: 45, 52, 78, 84, 87, 88, 89, 90, 91 y 93)

Familia Percidae Rafinesque 1815

Subfamilia Etheostomatinae Agassiz 1850

• Percina macrolepida (Stevenson 1971) Dulceacuícola. (Grupo II: ID: 32)

Suborden Notothenioidei

Familia Bovichtidae Gill 1862

- Bovichtus chilensis (Regan 1913) Marino. (Grupo IV: ID: 101)
- Cottoperca gobio (Günther 1861) Marino. (Grupo IV: ID: 101, 102, 103 y 104)

Familia Eleginopidae Gill 1893

• Eleginops maclovinus (Cuvier 1830) Marino. (Grupo IV: ID: 101, 102, 103 y 104)

Familia Nototheniidae Günther 1861

Subfamilia Nototheniinae Günther 1861

- Notothenia angustata (Hutton 1875) Marino. (Grupo IV: ID: 101)
- Patagonotothen brevicauda (Lönnberg 1905) Marino. (Grupo IV: ID: 101, 103 y 104)
- Patagonotothen longipes (Steindachner 1875) Marino. (Grupo IV: ID: 101, 102, 103 y 104)
- Patagonotothen sima (Richardson 1845) Marino. (Grupo IV: ID: 101)
- Patagonotothen tessellata (Richardson 1845) Marino. (Grupo IV: ID: 100, 101, 102, 103 y 104)

Familia Harpagiferidae Gill 1861

Subfamilia Harpagiferinae Gill 1861

• Harpagifer bispinis (Forster 1801) Marino. (Grupo IV: ID: 101, 103 y 104)

Familia Channichthyidae Gill 1861

• Champsocephalus esox (Günther 1861) Marino. (Grupo IV: ID: 103 y 104)

Suborden Scorpaenoidei

Familia Triglidae Rafinesque 1815

Subfamilia Prionotinae Kaup 1873

- Bellator gymnostethus (Gilbert 1892) Marino. (Grupo III: ID: 46 y 96)
- Bellator loxias (Jordan 1897) Marino. (Grupo III: ID: 46)
- Bellator xenisma (Jordan y Bollman 1890) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 44, 45, 46 y 59)
- Prionotus albirostris (Jordan y Bollman 1890) Marino. (Grupo III: ID: 44, 45 y 46)
- Prionotus birostratus (Richardson 1844) Marino. (Grupo III: ID: 45 y 46)
- Prionotus horrens (Richardson 1844) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 45, 74, 84, 92 y 93)
- Prionotus ruscarius (Gilbert y Starks 1904) Marino. (Grupo III: ID: 45, 46, 53, 65 y 69)
- Prionotus stephanophrys (Lockington 1881) Salobres marinas. (Grupo III: ID: 44, 45 y 46)

Familia Scorpaenidae Risso 1827

Subfamilia Scorpaeninae Risso 1827

- Scorpaena guttata (Girard 1854) Marino. (Grupo II: ID: 40, 41, 42, Grupo III: ID: 43, 44, 45 y 46)
- Scorpaena mystes (Jordan y Starks 1895) Marino. (Grupo III: ID: 44, 45, 46, 47, 53, 70, 74 y 85)
- Scorpaena russula (Jordan y Bollman 1890) Marino. (Grupo III: ID: 45, 46 y 47)
- Scorpaena sonorae (Jenkins y Evermann 1889) Marino. (Grupo III: ID: 45, 46, 47 y 51)

• Scorpaenodes xyris (Jordan y Gilbert 1882) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 45 y 46)

Subfamilia Sebastinae Kaup 1873

- Helicolenus lengerichi (Norman 1937) Marino. (Grupo IV: ID: 100 y 102)
- Sebastes auriculatus (Girard 1854) Marino. (Grupo II: ID: 24, 28, 31, 32, 33, 34, 35 y 42)
- Sebastes alutus (Gilbert 1890) Marino. (Grupo II: ID: 17)
- Sebastes atrovirens (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 33, 35 y 42)
- Sebastes carnatus (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 24 y 28)
- Sebastes caurinus (Richardson 1844) Marino. (Grupo II: ID: 21, 22, 24, 26 y 28)
- Sebastes constellatus (Jordan y Gilbert 1880) Marino. (Grupo III: ID: 45)
- Sebastes dallii (Eigenmann y Beeson 1894) Marino. (Grupo II: ID: 34)
- Sebastes flavidus (Ayres 1862) Marino. (Grupo II: ID: 24)
- Sebastes paucispinis (Ayres 1854) Marino. (Grupo II: ID: 24, 26, 28, 33 y 34)
- Sebastes maliger (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 24)
- Sebastes melanops (Girard 1856) Marino. (Grupo II: ID: 17, 22, 24, 26, 28 y 32)
- Sebastes miniatus (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 24)
- Sebastes mystinus (Jordan y Gilbert 1881) Marino. (Grupo II: ID: 34)
- Sebastes nebulosus (Ayres 1854) Marino. (Grupo II: ID: 24)
- Sebastes nigrocinctus (Ayres 1859) Marino. (Grupo II: ID: 16)
- Sebastes oculatus (Valenciennes 1833) Marino. (Grupo IV: ID: 98, 99, 100, 101 y 102)
- Sebastes pinniger (Gill 1864) Marino. (Grupo II: ID: 24)
- Sebastes rastrelliger (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 24, 28, 31 y 34)
- Sebastes serranoides (Eigenmann y Eigenmann 1890) Marino. (Grupo II: ID: 34)
 Familia Congiopodidae Gill 1889
 - Congiopodus peruvianus (Cuvier 1829) Marino. (Grupo IV: ID: 101)

Familia Normanichthyidae Clark 1937

• Normanichthys crockeri (Clark 1937) Marino. (Grupo IV: ID: 100 y 101)

Suborden Cottoidei

Familia Anoplopomatidae Jordan y Gilbert 1883

• Anoplopoma fimbria (Pallas 1814) Marino. (Grupo II: ID: 21)

Familia Hexagrammidae Jordan 1888

Subfamilia Hexagramminae Jordan 1888

- Hexagrammos decagrammus (Pallas 1810) Marino. (Grupo II: ID: 14, 15, 16, 17, 22, 23, 24, 26, 28, 31 y 32)
- Hexagrammos lagocephalus (Pallas 1810) Salobres marinas. (Grupo I: ID: 8, 9, 11, Grupo II: ID: 14, 15, 17, 22, 24, 26 y 28)
- Hexagrammos octogrammus (Pallas 1814) Dulceacuícolas-salobres-marinas.
 (Grupo II: ID: 14)
- Hexagrammos stelleri (Tilesius 1810) Salobres marinas. (Grupo I: ID: 8, 9, 11,
 Grupo II: ID: 14, 15, 16, 22 y 24)

Subfamilia Ophiodontinae Jordan y Gilbert 1883

Ophiodon elongatus (Girard 1854) Marino. (Grupo II: ID: 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31, 32, 33, y 34)

Subfamilia Oxylebiinae Gill 1862

• Oxylebius pictus (Gill 1862) Marino. (Grupo II: ID: 32 y 34)

Familia Jordaniidae Jordan y Evermann 1898

• Scorpaenichthys marmoratus (Ayres 1854) Marino. (Grupo II: ID: 17, 21, 22, 23, 24, 26, 28, 30, 32, 33 y 34)

Familia Cottidae Bonaparte 1831

- Cottus aleuticus (Gilbert 1896) Dulceacuícolas Salobres. (Grupo II: ID: 17, 22 y
 23)
- Cottus asper (Richardson 1836) Dulceacuícolas-salobres-marinas. (Grupo II: ID: 16, 17, 19, 21, 22, 23, 24, 26, 27, 28, 32 y 34)
- Cottus gulosus (Girard 1854) Dulceacuícola. (Grupo II: ID: 34)
- Cottus perplexus (Gilbert y Evermann 1894) **Dulceacuícola**. (**Grupo** II: **ID**: 17)
- Cottus philonips (Eigenmann y Eigenmann 1892) Dulceacuícolas Salobres.
 (Grupo I: ID: 6)
- Cottus rhotheus (Smith 1882) Dulceacuícola. (Grupo II: ID: 17)

Leptocottus armatus (Girard 1854) Salobres marinas. (Grupo II: ID: 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 y 42)

Familia Psychrolutidae Günther 1861

- Artedius harringtoni (Starks 1896) Marino. (Grupo II: ID: 14, 22, 24 y 32)
- Artedius fenestralis (Jordan y Gilbert 1883) Marino. (Grupo II: ID: 14, 17, 18, 21, 22, 24 y 26)
- Artedius notospilotus (Girard 1856) Marino. (Grupo II: ID: 28 y 32)
- Artedius lateralis (Girard 1854) Marino. (Grupo II: ID: 21, 24, 26 y 34)
- Ascelichthys rhodorus (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 24 y 26)
- Chitonotus pugetensis (Steindachner 1876) Marino. (Grupo I: ID: 5, 6 y 7)
- Clinocottus acuticeps (Gilbert 1896) Dulceacuícolas-salobres-marinas. (Grupo II: ID: 14, 15, 17, 21, 22, 24, 26 y 28)
- Clinocottus analis (Girard 1858) Marino. (Grupo II: ID: 30 y 31)
- Clinocottus embryum (Jordan y Starks 1895) Marino. (Grupo II: ID: 26)
- Clinocottus globiceps (Girard 1858) Marino. (Grupo II: ID: 22 y 26)
- Clinocottus recalvus (Greeley 1899) Marino. (Grupo II: ID: 26)
- Enophrys bison (Girard 1854) Marino. (Grupo I: ID: 5, 6, 7, Grupo II: ID: 14, 15, 16, 17, 21, 22, 23, 24, 26, 28 y 31)
- Gymnocanthus galeatus (Bean 1881) Marino. (Grupo II: ID: 14 y 15)
- Gymnocanthus tricuspis (Reinhardt 1830) Marino. (Grupo I: ID: 5, 6 y 7)
- *Icelinus borealis* (Gilbert 1896) Marino. (Grupo II: **ID**: 15)
- Megalocottus platycephalus (Pallas 1814) Salobres marinas. (Grupo I: ID: 5, 6 y
 7)
- Myoxocephalus polyacanthocephalus (Pallas 1814) Marino. (Grupo I: ID: 5, 6, 7,
 Grupo II: ID: 14 y 15)
- Myoxocephalus quadricornis (Linnaeus 1758) Dulceacuícolas-salobres-marinas.
 (Grupo I: ID: 1, 2, 3, 4, 5, 6, 7, 10 y 12)
- Myoxocephalus scorpius (Linnaeus 1758) Salobres marinas. (Grupo II: ID: 14)

- Oligocottus maculosus (Girard 1856) Marino. (Grupo II: ID: 14, 15, 16, 21, 22, 24, 26 y 32)
- Oligocottus snyderi (Greeley 1898) Marino. (Grupo II: ID: 22, 24, 26, 28 y 32)

Familia Agonidae Swainson 1839

Subfamilia Agoninae Swainson 1839

- Agonopsis chiloensis (Jenyns 1840) Marino. (Grupo IV: ID: 100, 101, 102, 103 y 104)
- Agonopsis sterletus (Gilbert 1898) Marino. (Grupo III: ID: 45)
- Podothecus accipenserinus (Tilesius 1813) Marino. (Grupo I: ID: 8, 9, 11, Grupo II: ID: 14 y 15)

Subfamilia Bathyagoninae Lindberg 1971

• Odontopyxis trispinosa (Lockington 1880) Marino. (Grupo II: ID: 28 y 32)

Subfamilia Brachyopsinae Jordan y Evermann 1898

- Chesnonia verrucosa (Lockington 1880) Marino. (Grupo II: ID: 17, 18, 21 y 24)
- Pallasina aix (Starks 1896) Marino. (Grupo I: ID: 5, 6, 7, 8, 9, 11, Grupo II: ID: 14, 21, 22, 24 y 26)
- Occella dodecaedron (Tilesius 1813) Salobres marinas. (Grupo I: ID: 5, 6, 7, 8, 9 y 11)
- Stellerina xyosterna (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 21, 22 y 28) Subfamilia Hypsagoninae Gill 1861
- Agonomalus mozinoi (Wilimovsky y Wilson 1979) Marino. (Grupo II: ID: 16)
 Subfamilia Hemitripterinae Gill 1865
 - Blepsias cirrhosus (Pallas 1814) Salobres marinas. (Grupo II: ID: 14, 15, 21, 22 y 24)
 - Hemilepidotus hemilepidotus (Tilesius 1811) Marino. (Grupo II: ID: 14, 21, 22, 24 y 28)
 - Hemilepidotus spinosus (Ayres 1854) Marino. (Grupo II: ID: 21, 22, 24, 28, 30 y
 32)

Familia Trichodontidae Bleeker 1859

• Trichodon (Tilesius 1813) Marino. (Grupo II: ID: 14 y 15)

Familia Liparidae Gill 186

- Careproctus pallidus (Vaillant 1888) Marino. (Grupo IV: ID: 101)
- Liparis fucensis (Gilbert 1896) Marino. (Grupo II: ID: 21 y 31)
- Liparis florae (Jordan y Starks 1895) Marino. (Grupo II: ID: 24)
- Liparis mucosus (Ayres 1855) Marino. (Grupo II: ID: 21 y 28)
- Liparis pulchellus (Ayres 1855) Marino. (Grupo II: ID: 19, 28 y 32)
- Liparis rutteri (Gilbert y Snyder 1898) Marino. (Grupo I: ID: 8, 9, 11, Grupo II: ID: 21 y 28)

Suborden Gasterosteoidei

Familia Gasterosteidae Bonaparte 1831

• Gasterosteus aculeatus (Linnaeus 1758) **Dulceacuícolas-salobres-marinas**. (**Grupo** I: **ID**: 5, 6, 7, 8, 9, 10, 11, 12, 13, **Grupo** II: **ID**: 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 30, 32, 33 y 34)

Familia Aulorhynchidae Gill 1861

Aulorhynchus flavidus (Gill 1861) Marino. (Grupo II: ID: 15, 16, 17, 21, 22, 23, 24, 26, 28 y 30)

Suborden Zoarcoidei

Familia Zoarcidae Swainson 1839

Subfamilia Lycodinae Gill 1861

- Austrolycus depressiceps (Regan 1913) Marino. (Grupo IV: ID: 101, 103 y 104)
- *Iluocoetes facali* (Lloris y Rucabado 1987) Marino. (Grupo IV: ID: 101)
- Ophthalmolycus macrops (Günther 1880) Marino. (Grupo IV: ID: 101)

Familia Anarhichadidae Bonaparte 1835

- Anarhichas orientalis (Pallas 1814) Marino. (Grupo I: ID: 8, 9 y 11)
- Anarrhichthys ocellatus (Ayres 1855) Marino. (Grupo II: ID: 21, 22, 24 y 26)

Familia Stichaeidae Gill 1864

Subfamilia Xiphisterinae Jordania 1880

- Anoplarchus insignis (Gilbert y Burke 1912) Marino. (Grupo II: ID: 24)
- Anoplarchus purpurescens (Gill 1861) Marino. (Grupo II: ID: 17, 21, 22, 24 y 26)
- Xiphister mucosus (Girard 1858) Marino. (Grupo II: ID: 21)

Subfamilia Stichaeinae Gill 1864

• Stichaeus punctatus (Fabricius 1780) Marino. (Grupo II: ID: 15)

Familia Lumpenidae Jordan y Evermann 1898

- Lumpenus fabricii (Reinhardt 1836) Marino. (Grupo II: ID: 14)
- Lumpenus sagitta (Wilimovsky 1956) Marino. (Grupo I: ID: 5, 6, 7, Grupo II: ID: 14, 15, 16, 17, 18, 19, 21, 22, 23, 24 y 26)

Familia Pholidae Gill 1893

Subfamilia Pholinae Gill 1893

- *Pholis laeta* (Cope 1873) **Marino.** (**Grupo** II: **ID**: 14, 15, 16, 17, 24 y 26)
- Pholis ornata (Girard 1854) Marino. (Grupo II: ID: 16, 17, 19, 21, 22, 23, 24, 26, 28, 30, 31 y 32)
- Pholis schultzi (Schultz 1931) Marino. (Grupo II: ID: 21 y 26)

Subfamilia Apodichthyinae Hubbs 1927

- Apodichthys fucorum (Jordan y Gilbert 1880) Marino. (Grupo II: ID: 21 y 34)
- Apodichthys flavidus (Girard 1854) Marino. (Grupo II: ID: 14, 16, 21, 22, 24, 26, 28, 31, 32 y 34)

Familia Cebidichthyidae Gill 1862

• Cebidichthys violaceus (Girard 1854) Marino. (Grupo II: ID: 24, 30 y 34)

Familia Bathymasteridae Jordan y Gilbert 1883

- Ronquilus jordani (Gilbert 1889) Marino. (Grupo II: ID: 26)
- Bathymaster signatus (Cope 1873) Marino (Grupo II: ID: 14)

Orden Centrarchiformes

Suborden Terapontoidei

Familia Girellidae Gill 1862

- Girella nigricans (Ayres 1860) Marino. (Grupo II: ID: 35, 38, 40, 41, 42, Grupo III: ID: 43, 44 y 45)
- Girella simplicidens (Osburn y Nichols 1916) Marino. (Grupo III: ID: 46 y 47)

Familia Scorpididae Günther 1860

• Medialuna californiensis (Steindachner 1875) Marino. (Grupo II: ID: 40)

Familia Kyphosidae Jordan 1887

- Kyphosus azureus (Jenkins y Evermann 1889) Marino. (Grupo III: ID: 44, 45, 46 y 47)
- *Kyphosus elegans* (Peters 1869) **Marino.** (**Grupo** III: **ID**: 45, 46, 47, 50, 69, 71, 78, 87 y 93)
- Kyphosus ocyurus (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 82)
- Kyphosus vaigiensis (Quoy y Gaimard 1825) Marino. (Grupo III: ID: 73 y 74)

Suborden Centrarchoidei

Familia Centrarchidae Bleeker 1859

Subfamilia Centrarchinae Bleeker 1859

- Pomoxis annularis (Rafinesque 1818) **Dulceacuícola.** (**Grupo** II: **ID**: 16 y 32)
- Pomoxis nigromaculatus (Lesueur 1829) Dulceacuícola. (Grupo II: ID: 32)

Subfamilia Lepominae Gill 1864

- Micropterus dolomieu (Lacepède 1802) Dulceacuícola. (Grupo II: ID: 32)
- Micropterus salmoides (Lacepède 1802) Dulceacuícola. (Grupo II: ID: 17 y 32)
- Lepomis cyanellus (Rafinesque 1819) Dulceacuícola. (Grupo II: ID: 34 y 38)
- Lepomis macrochirus (Rafinesque 1819) Dulceacuícola. (Grupo II: ID: 32 y 38)

Suborden Cirritioidei

Familia Latridae Gill 1862

• Chirodactylus variegatus (Valenciennes 1833) Marino. (Grupo IV: ID: 98)

Orden Labriformes

Suborden Labroidei

Familia Labridae Cuvier 1816

- Bodianus diplotaenia (Gill 1862) Marino. (Grupo III: ID: 45, 46 y 47)
- Bodianus pulcher (Ayres 1854) Marino. (Grupo III: ID: 43, 45 y 46)
- Decodon melasma (Gomon 1974) Marino. (Grupo III: ID: 46)
- Halichoeres aestuaricola (Bussing 1972) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 78, 86, 91, 92 y 93)
- Halichoeres californicus (Günther 1861) Marino. (Grupo II: ID: 32, 40, 41, 42,
 Grupo III: ID: 44, 45 y 47)

- Halichoeres chierchiae (Di Caporiacco 1948) Marino. (Grupo III: ID: 45 y 46)
- Halichoeres dispilus (Günther 1864) Marino. (Grupo III: ID: 45, 46, 75 y 92)
- Halichoeres nicholsi (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 46)
- Halichoeres notospilus (Günther 1864) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 46, 92 y 93)
- Halichoeres semicinctus (Ayres 1859) Marino. (Grupo II: ID: 40, 41, Grupo III: ID: 43, 44, 45, 46 y 47)
- Nicholsina denticulata (Evermann y Radcliffe 1917) Marino. (Grupo III: ID: 45, 46, 47 y 75)
- Scarus compressus (Osburn y Nichols 1916) Marino. (Grupo III: ID: 46 y 47)
- Scarus ghobban (Fabricius 1775) Marino. (Grupo III: ID: 45, 46 y 47)
- Scarus perrico (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 45, 46 y 47)
- Scarus rubroviolaceus (Bleeker 1847) Marino. (Grupo III: ID: 46)
- Thalassoma grammaticum (Gilbert 1890) Marino. (Grupo III: ID: 45)
- Thalassoma lucasanum (Gill 1862) Marino. (Grupo III: ID: 45, 46 y 47)

Suborden Uranoscopoidei

Familia Ammodytidae Bonaparte 1835

- Ammodytes hexapterus (Pallas 1814) Salobres marinas. (Grupo I: ID: 5, 6, 7, 8, 9, 11, 12, 13, Grupo II: ID: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29 y 32)
- Ammodytes personatus (Girard 1856) Marino. (Grupo II: ID: 14 y 15)

Familia Uranoscopidae Bonaparte 1831

- Astroscopus zephyreus (Gilbert y Starks 1897) Marino. (Grupo III: ID: 44 y 45)
- Kathetostoma averruncus (Jordan y Bollman 1890) Marino. (Grupo III: ID: 45 y 46)

Familia Pinguipedidae Günther 1860

- Pinguipes chilensis (Valenciennes 1833) Marino. (Grupo IV: ID: 101 y 102)
- Prolatilus jugularis (Valenciennes 1833) Dulceacuícolas-salobres-marinas.
 (Grupo IV: ID: 98, 100, 101 y 102)

Orden Acropomatiformes

Familia Polyprionidae Bleeker 1874

- Polyprion oxygeneios (Schneider y Forster 1801) Marino. (Grupo IV: ID: 101)
 Familia Stereolepididae Smith, Ghedotti y Davis 2022
 - Stereolepis gigas (Ayres 1859) Marino. (Grupo III: ID: 44)

Orden Acanthuriformes

Familia Gerreidae Bleeker 1859

- Deckertichthys aureolus (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 46, 93 y 96)
- Diapterus brevirostris (Sauvage 1879) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 y 96)
- Eucinostomus currani (Zahuranec 1980) **Dulceacuícolas-salobres-marinas. IUCN (2015): Preocupación menor (Grupo** III: **ID**: 43, 44, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 83, 87, 89, 90, 91, 94 y 96)
- Eucinostomus dowii (Gill 1863) Salobres marinas. (Grupo III: ID: 44, 45, 46, 47, 49, 50, 51, 55, 58, 59, 65, 69, 72, 73, 74, 75, 78, 82, 84, 90, 92, 93, 94 y 96)
- Eucinostomus entomelas (Zahuranec 1980) Salobres marinas. (Grupo III: ID: 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 57, 65, 69, 73, 90 y 96)
- Eucinostomus gracilis (Gill 1862) Dulceacuícolas-salobres-marinas. IUCN
 (2010): Preocupación menor (Grupo III: ID: 44, 45, 46, 47, 49, 54, 55, 73, 74, 77, 87, 92, 95 y 96)
- Eugerres axillaris (Günther 1864) Dulceacuícolas-salobres-marinas. IUCN
 (2017): Preocupación menor (Grupo III: ID: 45, 46, 47, 51, 52, 53, 54, 55, 57, 58, 68, 69, 74, 75 y 78)
- Eugerres brevimanus (Günther 1864) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 88, 90, 91, 92 y 96)

- Eugerres lineatus (Humboldt 1821) Dulceacuícolas-salobres-marinas. IUCN
 (2010): Preocupación menor (Grupo III: ID: 46, 65, 66, 67, 68, 69, 71, 74, 75 y
 76)
- Gerres simillimus (Regan 1907) Dulceacuícolas-salobres-marinas. (Grupo III: ID: 45, 46, 47, 48, 49, 50, 54, 55, 56, 57, 58, 59, 60, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 87, 88, 89, 92, 93, 94, 96 y 97)

Familia Moronidae Jordan y Evermann 1896

Morone saxatilis (Walbaum 1792) Dulceacuícolas-salobres-marinas. (Grupo II:
 ID: 26, 29, 31, 32, 33, 37 y 38)

Familia Ephippidae Bleeker 1859

- Chaetodipterus zonatus (Girard 1858) Marino. (Grupo III: ID: 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 58, 71, 72, 73, 74, 78, 84, 88, 89, 92 y 93)
- Parapsettus panamensis (Steindachner 1875) Marino. (Grupo III: ID: 49, 74, 78, 79, 80, 81, 82, 83, 92, 93 y 96)

Familia Sciaenidae Cuvier 1829

- Atractoscion nobilis (Ayres 1860) Marino. (Grupo II: ID: 26, 28, 35, 37, 38, 40, 41, Grupo III: ID: 43, 44 y 45)
- Bairdiella armata (Gill 1863) Salobres marinas. (Grupo III: ID: 74, 78, 86, 88, 89
 y 90)
- Bairdiella ensifera (Jordan y Gilbert 1882) Salobres marinas. (Grupo III: ID: 54, 73, 74, 77, 78, 83, 84, 88, 89, 90, 91, 92 y 95)
- Bairdiella icistia (Jordan y Gilbert 1882) Salobres marinas. (Grupo III: ID: 44, 45, 46, 49, 51, 52, 53, 54, 55 y 74)
- Cheilotrema saturnum (Girard 1858) Marino. (Grupo II: ID: 40, Grupo III: ID: 43, 45 y 51)
- Cynoscion analis (Jenyns 1842) Salobres marinas. (Grupo III: ID: 92 y 97)
- Cynoscion albus (Günther 1864) Salobres marinas. (Grupo III: ID: 46, 74, 78, 82, 88, 89, 95 y 96)
- Cynoscion parvipinnis (Ayres 1861) Salobres marinas. (Grupo II: ID: 40, 41,
 Grupo III: ID: 43, 44, 45, 46, 47, 48, 49, 51 y 53)

- Cynoscion phoxocephalus (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 44, 84, 91, 92, 93 y 95)
- Cynoscion praedatorius (Jordan y Gilbert 1889) Marino. (Grupo III: ID: 92)
- Cynoscion reticulatus (Günther 1864) Salobres marinas. (Grupo III: ID: 45, 46, 48, 58, 65, 69, 79, 80, 81, 82, 83, 85, 92 y 93)
- Cynoscion squamipinnis (Günther 1867) Salobres marinas. (Grupo III: ID: 51, 84, 88, 92, 93 y 95)
- Cynoscion stolzmanni (Steindachner 1879) Salobres marinas. (Grupo III: ID: 45, 69, 74, 88, 92 y 95)
- Cynoscion xanthulus (Jordan y Gilbert 1882) Salobres marinas. (Grupo II: ID: 41, Grupo III: ID: 43, 44, 45, 46, 49, 51, 52, 53, 54, 55, 56, 69 y 74)
- Elattarchus archidium (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 45, 58, 74 y 93)
- Genyonemus lineatus (Ayres 1855) Marino. (Grupo II: ID: 28, 29, 32, 33, 35, 36, 37, 38, 40 y 42)
- *Isopisthus altipinnis* (Steindachner 1866) **Salobres marinas.** (**Grupo** III: **ID**: 55, 78, 80, 81, 82, 83, 85, 90, 92, 93 y 95)
- Larimus acclivis (Jordan y Bristol 1898) **Marino.** (**Grupo** III: **ID**: 46, 54, 58, 79, 80, 81, 82, 85 y 92)
- Larimus argenteus (Gill 1863) Salobres marinas. (Grupo III: ID: 90, 92 y 93)
- Larimus effulgens (Gilbert 1898) Marino. (Grupo III: ID: 78 y 92)
- Larimus pacificus (Jordan y Bollman 1890) Marino. (Grupo III: ID: 45, 51 y 93)
- Macrodon mordax (Gilbert y Starks 1904) Salobres marinas. (Grupo III: ID: 90 y
 92)
- Menticirrhus elongatus (Günther 1864) Marino. (Grupo III: ID: 45, 54, 69, 78, 92 y 96)
- Menticirrhus nasus (Günther 1868) Marino. (Grupo III: ID: 44, 45, 57, 65, 69, 72, 78, 84, 92 y 93)
- Menticirrhus panamensis (Steindachner 1876) Marino. (Grupo III: ID: 44, 45, 48, 51, 73, 74, 79, 80, 81, 82, 83, 88, y 92)

- Menticirrhus undulatus (Girard 1854) Marino. (Grupo II: ID: 37, 38, 40, 41, 42,
 Grupo III: ID: 43, 44, 45, 46, 47, 48 y 53)
- Micropogonias altipinnis (Günther 1864) Salobres marinas. IUCN (2020):
 Preocupación menor (Grupo III: ID: 45, 46, 47, 51, 53, 54, 55, 58, 69, 72, 73, 74, 78, 79, 80, 81, 82, 83, 84, 89, 90 y 95)
- Nebris occidentalis (Vaillant 1897) Salobres marinas. (Grupo III: ID: 73, 74, 78, 79, 80, 81, 82, 92 y 93)
- Paralonchurus dumerilii (Bocourt 1869) Salobres marinas. (Grupo III: ID: 88, 92, 93 y 95)
- Paralonchurus goodei (Gilbert 1898) Salobres marinas. (Grupo III: ID: 44, 73, 74, 78, 92 y 93)
- Pareques viola (Gilbert 1898) Marino. (Grupo III: ID: 43, 45, 46 y 47)
- Roncador stearnsii (Steindachner 1875) Marino. (Grupo II: ID: 37, 40, 41, Grupo III: ID: 43, 44 y 45)
- Seriphus politus (Ayres 1860) Marino. (Grupo II: ID: 33, 37, 38, 40, 41 y 42)
- Stellifer chrysoleuca (Günther 1867) Marino. (Grupo III: ID: 90 y 93)
- Stellifer ericymba (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 44, 45 y 92)
- Stellifer fuerthii (Steindachner 1875) Marino. (Grupo III: ID: 92, 93 y 95)
- Stellifer imiceps (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 90)
- Stellifer scierus (Jordan y Gilbert 1884) Marino. (Grupo III: ID: 84, 92 y 95)
- Stellifer oscitans (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 84, 88, 90 y 92)
- Stellifer strabo (Gilbert 1897) Salobres marinas. (Grupo III: ID: 46 y 92)
- Stellifer typicus (Gill 1863) **Dulceacuícolas-salobres-marinas**. (**Grupo** III: **ID**: 84, 90, 92 y 93)
- Stellifer walkeri (Chao 2001) Marino. (Grupo III: ID: 78)
- Stellifer wintersteenorum (Chao 2001) Marino. (Grupo III: ID: 78)
- Stellifer zestocarus (Gilbert 1898) Salobres marinas. (Grupo III: ID: 90 y 92)
- Totoaba macdonaldi (Gilbert 1890) Salobres marinas. (Grupo III: ID: 49)
- Umbrina analis (Günther 1868) Marino. (Grupo III: ID: 45, 46, 47, 51, 82, 83 y
 93)

- Umbrina roncador (Jordan y Gilbert 1882) Marino. (Grupo II: ID: 37, 38, 40, 41, 42, Grupo III: ID: 43, 44, 45, 46, 47, 48, 49, 53, 62 y 86)
- Umbrina xanti (Gill 1862) Marino. (Grupo III: ID: 44, 45, 46, 47, 56, 58, 65, 69, 73, y 93)
- Umbrina wintersteeni (Walker y Radford 1992) Marino. (Grupo III: ID: 45, 46 y
 47)

Familia Haemulidae Gill 1885

Subfamilia Haemulinae Gill 1885

- Anisotremus caesius (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 85)
- Anisotremus davidsonii (Steindachner 1875) Marino. (Grupo II: ID: 38, 40, 41, 42, Grupo III: ID: 43, 44, 45 y 49)
- Anisotremus interruptus (Gill 1862) Marino. (Grupo III: ID: 43, 45, 46, 47 y 95)
- Anisotremus taeniatus (Gill 1861) Marino. (Grupo III: ID: 45)
- Brachygenys californiensis (Steindachner 1875) Marino. (Grupo II: ID: 40, 41, Grupo III: ID: 44, 45, 46, 47, 49 y 53)
- Conodon serrifer (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 45, 46, 73 y 74)
- Haemulon flaviguttatum (Gill 1862) Marino. (Grupo III: ID: 44, 45, 46, 47, 48, 49, 59 y 85)
- Haemulon maculicauda (Gill 1862) Marino. (Grupo III: ID: 45, 46, 47 y 51)
- Haemulon scudderii (Gill 1862) Marino. (Grupo III: ID: 45, 46 y 47)
- Haemulon steindachneri (Jordan y Gilbert 1882) Salobres marinas. (Grupo III:
 ID: 45, 46 y 47)
- Haemulon sexfasciatum (Gill 1862) Marino. (Grupo III: ID: 45, 46, 47, 49, 50, 51, 53, 92 y 93)
- Haemulopsis axillaris (Steindachner 1869) Marino. (Grupo III: ID: 45, 46, 75, 78, 82 y 96)
- Haemulopsis elongata (Steindachner 1879) Marino. (Grupo III: ID: 45, 46, 50, 51, 58, 87, 90 y 96)
- Haemulopsis leuciscus (Günther 1864) Dulceacuícolas-salobres-marinas. IUCN
 (2010): Preocupación menor (Grupo III: ID: 45, 46, 47, 52, 53, 54, 55, 56, 58, 69, 70, 71, 72, 73, 74, 77, 78, 82, 83, 84, 85, 86, 87, 89, 90, 92, 93, 95 y 96)

- Haemulopsis nitida (Steindachner 1869) Marino. (Grupo III: ID: 45, 46, 51, 52, 54, 59, 73, 74, 84, 87, 90 y 92)
- Microlepidotus inornatus (Gill 1862) Marino. (Grupo III: ID: 44, 45, 46 y 47)
- Orthopristis cantharina (Jenyns 1840) Marino. (Grupo III: ID: 45, 46 y 47)
- Orthopristis chalcea (Günther 1864) Marino. (Grupo III: ID: 44, 45, 46, 47, 48, 49, 59, 73, 75, 79, 80, 81, 82, 83, 84 y 85)
- Orthopristis reddingi (Jordan y Richardson 1895) Marino. (Grupo III: ID: 43, 44, 45, 46, 47, 48, 49, 50, 51, 52 y 53)
- Pomadasys empherus (Bussing 1993) *Endémico. Dulceacuícolas-salobres-marinas. (Grupo III: ID: 73 y 90)
- Rhencus macracanthus (Günther 1864) Dulceacuícolas-salobres-marinas. IUCN
 (2010): Preocupación menor (Grupo III: ID: 45, 46, 49, 50, 51, 52, 53, 54, 55, 57, 69, 71, 73, 74, 77, 78, 88, 89, 90, 91, 92, 93, 95 y 96)
- *Rhencus panamensis* (Steindachner 1875) **Marino.** (**Grupo** III: **ID**: 44, 45, 46, 51, 74, 80, 81, 82, 83, 88, 89, 92, 93 y 96)
- Rhonciscus bayanus (Jordan y Evermann 1898) **Dulceacuícolas-salobres-marinas. IUCN (2020): Preocupación menor (Grupo** III: **ID**: 45, 46, 58, 74, 78, 89, 92, 93 y 96)
- Rhonciscus branickii (Steindachner 1879) Salobres marinas. IUCN (2010):
 Preocupación menor (Grupo III: ID: 45, 46, 51, 52, 53, 54, 60, 65, 69, 70, 71, 73, 86, 87, 88, 89, 90 y 96)
- Xenichthys xanti (Gill 1863) Marino. (Grupo III: ID: 58, 77 y 93)

Subfamilia Plectorhinchinae Jordan y Thompson 1912

- Genyatremus dovii (Günther 1864) Marino. (Grupo III: ID: 73, 84, 85, 86, 88, 89, 92 y 96)
- Genyatremus pacifici (Günther 1864) Marino. (Grupo III: ID: 74, 78, 84, 88, 90, 92, 93, 95 y 96)

Familia Lobotidae Gill 1861

• Lobotes pacifica (Gilbert 1898) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 58, 73, 78, 82, 85, 86, 90, 92, 93 y 95)

Familia Lutjanidae Gill 1861

Subfamilia Lutjaninae Gill 1861

- Hoplopagrus guentherii (Gill 1862) Marino. (Grupo III: ID: 44, 45, 46, 47, 49, 51, 58, 73, 74, 75, 78, 85, 87, 88, 90, 91, 92 y 93)
- Lutjanus aratus (Günther 1864) Marino. (Grupo III: ID: 46, 47, 52, 54, 55, 56, 87, 91, 92 y 93)
- Lutjanus argentiventris (Peters 1869) Dulceacuícolas-salobres-marinas. IUCN (2010): Preocupación menor (Grupo III: ID: 45, 46, 47, 50, 51, 52, 54, 55, 57, 58, 59, 61, 63, 65, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93 y 96)
- Lutjanus colorado (Jordan y Gilbert 1882) Dulceacuícolas-salobres-marinas.
 IUCN (2010): Preocupación menor (Grupo III: ID: 45, 46, 47, 55, 56, 58, 70, 71, 74, 75, 77, 78, 79, 80, 81, 82, 83, 86, 87, 88, 89, 90 y 91)
- Lutjanus guttatus (Steindachner 1869) Salobres marinas. (Grupo III: ID: 45, 46, 47, 50, 55, 56, 58, 59, 65, 68, 69, 74, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 92 y 93)
- Lutjanus novemfasciatus (Gill 1862) **Dulceacuícolas-salobres-marinas**. **IUCN** (2010): Preocupación menor (Grupo III: **ID**: 45, 46, 47, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 69, 70, 71, 74, 75, 77, 78, 79, 80, 81, 83, 86, 87, 88, 89, 91, 92 y 93)
- Lutjanus peru (Nichols y Murphy 1922) Marino. (Grupo III: ID: 45, 46, 49, 50 y
 87)

Familia Latilidae Gill 1862

- Caulolatilus affinis (Gill 1865) Salobres marinas. (Grupo III: ID: 45 y 46)
- Caulolatilus princeps (Jenyns 1840) Marino. (Grupo III: ID: 45)

Familia Pomacanthidae Jordan y Evermann 1898

- Holacanthus passer (Valenciennes 1846) Marino. (Grupo III: ID: 45, 46 y 47)
- Pomacanthus zonipectus (Gill 1862) Marino. (Grupo III: ID: 43, 45, 46 y 47)

Familia Chaetodontidae Rafinesque 1815

Subfamilia Heniochinae Kaup 1860

• Forcipiger flavissimus (Jordan y McGregor 1898) Marino. (Grupo III: ID: 46)

• Johnrandallia nigrirostris (Gill 1862) Marino. (Grupo III: ID: 45 y 46)

Subfamilia Chaetodontinae Rafinesque 1815

• Chaetodon humeralis (Günther 1860) Marino. IUCN (2009): Preocupación menor (Grupo III: ID: 44, 45, 46, 55, 58, 74, 75, 78, 84, 87, 93, 95 y 96)

Familia Zanclidae Bleeker 1876

• Zanclus cornutus (Linnaeus 1758) Marino. (Grupo III: ID: 47)

Familia Acanthuridae Bonaparte 1835

- Acanthurus achilles (Shaw 1803) Marino. (Grupo III: ID: 46)
- Acanthurus nigricans (Linnaeus 1758) Marino. (Grupo III: ID: 46)
- Acanthurus triostegus (Linnaeus 1758) Marino. (Grupo III: ID: 46)
- Acanthurus xanthopterus (Valenciennes 1835) Marino. (Grupo III: ID: 47, 58, 74 y 75)

Familia Sparidae Rafinesque 1818

• Calamus brachysomus (Lockington 1880) Marino. (Grupo III: ID: 43, 44, 45, 46, 47, 48, 49 y 53)

Familia Priacanthidae Günther 1859

- Cookeolus japonicus (Cuvier 1829) Marino. (Grupo III: ID: 45)
- Pristigenys serrula (Gilbert 1891) Marino. (Grupo III: ID: 44, 45, 46, 47 y 93)

Orden Lophiiformes

Suborden Lophioidei

Familia Lophiidae Rafinesque 1810

- Lophiodes caulinaris (Garman 1899) Marino. (Grupo III: ID: 46)
- Lophiodes spilurus (Garman 1899) Marino. (Grupo III: ID: 88)

Suborden Ogcocephaloidei

Familia Ogcocephalidae Gill 1893

• Zalieutes elater (Jordan y Gilbert 1882) Marino. (Grupo III: ID: 46)

Suborden Antennarioidei

Familia Antennariidae Jarocki 1822

• Fowlerichthys avalonis (Jordan y Starks 1907) Marino. (Grupo III: ID: 45, 46 y 47)

Orden Tetraodontiformes

Suborden Tetraodontoidei

Familia Diodontidae Billberg 1833

- Chilomycterus reticulatus (Linnaeus 1758) Marino. (Grupo III: ID: 45, 46 y 47)
- Diodon holocanthus (Linnaeus 1758) Marino. IUCN (2015): Preocupación menor (Grupo III: ID: 45, 46, 47, 53, 58, 74, 78, 87 y 96)
- Diodon hystrix (Linnaeus 1758) Salobres marinas. (Grupo III: ID: 44, 45, 46, 47, 56, 58, 69, 74, 75, 77 y 78)

Familia Tetraodontidae Bonaparte 1831

- Arothron meleagris (Anónimo 1798) Marino. IUCN (2014): Preocupación menor
 (Grupo III: ID: 46, 58, 75, 78 y 87)
- Arothron hispidus (Linnaeus 1758) Salobres marinas. (Grupo III: ID: 58 y 89)
- Canthigaster punctatissima (Günther 1870) Marino. (Grupo III: ID: 46)
- Guentheridia formosa (Günther 1870) Marino. (Grupo III: ID: 88)
- Sphoeroides angusticeps (Jenyns 1842) Marino. IUCN (2023): Preocupación menor *Endémica (Grupo III: ID: 46 y 55)
- Sphoeroides annulatus (Jenyns 1842) Dulceacuícolas-salobres-marinas. IUCN (2010): Preocupación menor (Grupo III: ID: 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 64, 65, 69, 70, 71, 73, 74, 75, 77, 78, 84, 87, 88, 89, 92, 93, 94 y 96)
- Sphoeroides kendalli (Meek y Hildebrand 1928) Marino. (Grupo III: ID: 88)
- Sphoeroides lispus (Walker 1996) Marino. (Grupo III: ID: 44 y 45)
- Sphoeroides lobatus (Steindachner 1870) Salobres marinas. (Grupo III: ID: 43, 44, 45, 46, 47, 55, 58, 59, 65, 69, 92 y 93)
- Sphoeroides rosenblatti (Bussing 1996) Dulceacuícolas-salobres-marinas.
 (Grupo III: ID: 75, 77, 78, 88, 91 y 94)
- Sphoeroides sechurae (Hildebrand 1946) Marino. IUCN (2010): Preocupación menor (Grupo III: ID: 46, 73 y 88)
- Sphoeroides trichocephalus (Cope 1870) Marino. (Grupo III: ID: 92 y 96)

Suborden Balistoidei

• Aluterus scriptus (Osbeck 1765) Marino. (Grupo III: ID: 46 y 47)

Familia Balistidae Rafinesque 1810

- *Balistes polylepis* (Steindachner 1876) **Marino.** (**Grupo** III: **ID**: 43, 44, 45, 46, 47, 51, 53 y 95)
- Pseudobalistes naufragium (Jordan y Starks 1895) Salobres marinas. IUCN
 (2010): Preocupación menor (Grupo III: ID: 55, 74, 75, 78, 84, 92 y 93)
- Sufflamen verres (Gilbert y Starks 1904) Marino. (Grupo III: ID: 45 y 47)

DISCUSIÓN

Como ocurre con otros grupos faunísticos, existe gran dificultad para determinar un número real de especies asociadas a estuarios a nivel mundial, principalmente por la discrepancia en definir con precisión el grado de dependencia que presentan las especies de peces hacia los estuarios, lo cual ha llevado a diversas clasificaciones y enfoques, en función de criterios como su tolerancia a la salinidad, profundidad, gremio, patrones migratorios, tiempo de residencia y frecuencia del uso de los hábitats estuarinos (Whitfield *et al.*, 2023; Zydlewski y Wilkie, 2012).

A nivel mundial, las compilaciones hechas sobre peces asociados a estuarios, y que también suelen incluir a especies marinas de ambientes cercanos a la línea de costa, reportan más de 6000 especies, con variaciones notables en su número en diferentes regiones del mundo (Harrison y Whitfield, 2021; Vasconcelos *et al.*, 2015). Para el Pacífico Oriental, la estimación más antigua propuesta por Briggs (1961), incluye a 571 especies ícticas estuarinas; mientras que hay reportes sobre riqueza íctica para regiones específicas como el Golfo de California (200 a 800 especies; Hastings *et al.*, 2010), el Pacífico tropical mexicano (563 especies; Espinoza-Pérez, 2014) y la costa chilena de Sudamérica (más de 500 especies; Harrison y Whitfield, 2021).

En este estudio se reportan 969 especies válidas, lo que representa poco más del 16% la ictiofauna estuarina del mundo. Adicionalmente, este listado reporta 78 especies en la lista roja de la IUCN (2024). Esta lista contempla 104,580 especies de peces dentro de alguna categoría, por lo que en el Pacífico Oriental solo el 0.7% de peces estuarinos estarían representados en la lista. Así mismo, en los sistemas estuarinos, la ictiofauna se caracteriza por presentar bajos niveles de endemismo, en comparación con la ictiofauna de hábitats rocosos y coralinos, y este bajo endemismo se debe a que las especies de estos ecosistemas presentan una distribución amplia y continua (Castro-Aguirre *et al.*, 1999).

La formación de cuatro grupos ictiofaunísticos a lo largo de los ambientes estuarinos en el Pacífico Oriental, es coincidente parcialmente con los tres grandes conjuntos biogeográficos para este océano: Ártico, Tropical y Antártico (Kocsis *et al.*, 2018), la cual es recurrente en el estudio de Harrison y Whitfield (2021) para peces estuarinos. En nuestro estudio, se logran recuperar cuatro grupos, obteniendo un grupo para el Pacífico Nororiental, en un ambiente templado, separado del Ártico, lo que indica un conjunto de especies indicadoras que definen a esta área. En el grupo I

Ártico-Polar, se encontraron 50 especies, siendo las familias más representativas Salmonidae, Psychrolutidae y Pleuronectidae, encontrado a peces de profundidad de altas latitudes (Mecklenburg *et al.*, 2018).

Para el grupo II Pacífico Frío-Cálido Nororiental, se recopilaron en lista a 255 especies, con representatividad de familias como Embiotocidae y Scorpaenidae; en el caso de la primera, es considerada como una familia endémica del Pacífico templado (Bernardi y Bucciarielli, 1999). En el caso del grupo III Pacífico Oriental Tropical, este fue el más rico con 683 especies, y las familias Sciaenidae, Gobiidae y Haemulidae como las más representativas, las cuales son mencionadas como representantes ictiofaunísticos conspicuos de aguas tropicales y subtropicales (Sasaki, 2001). Finalmente, para el grupo IV Pacifico Frío-Cálido Sudoriental, se recopilaron 74 especies, con las familias Nototheniidae y Atherinopsidae como representativas. En el caso de Nototheniidae, es considerada endémica del antártico y áreas adyacentes en las zonas australes (Eastman, 2005).

En términos generales, hay una predominancia de Perciformes sobre otros órdenes de teleósteos (por ejemplo, Clupeiformes, Pleuronectiformes, Siluriformes, Anguilliformes, Tetraodontiformes, y Beloniformes), lo cual ya ha sido observado como un patrón común en ambientes estuarinos (Yáñez-Arancibia, 1978). En áreas transicionales, por ejemplo, entre el Ártico y el Pacífico templado o entre el Golfo de California y el Pacífico mexicano, se refleja la existencia de antiguas conexiones ocurridas en periodos glaciales, las que permitieron una mayor afinidad de especies marinas que dulceacuícolas secundarias en las provincias costeras (Hastings *et al.*, 2010). Los listados enfatizan la importancia de actualizar la identificación taxonómica y documentar las distribuciones geográficas de las especies de peces que habitan los estuarios del Pacífico Oriental, lo que proporciona la base para formular e implementar una gestión más eficaz.

REFERENCIAS BIBLIOGRÁFICAS

- Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134-143.
- Baselga, A. 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21: 1223-1232.
- Bernardi, G. y Bucciarelli, G. 1999. Molecular Phylogeny and Speciation of the Surfperches (Embiotocidae, Perciformes). Molecular Phylogenetics and Evolution, 13, 77-81.
- Briggs, J. C. 1961. The east Pacific barrier and the distribution of marine shore fishes. Evolution, 15, 545-554.
- Briggs, J. C. 1974. Marine zoogeography. McGraw Hill. New York. United States of America.
- Castro-Aguirre, J. L., Espinoza-Pérez, H. y Schmitter-Soto, J. J. 1999. Ictiofauna estuarina, lagunar y vicaria de México. Instituto Politécnico Nacional, Limusa. Ciudad de México.
- Cayan, D. R. y Peterson, D. H. 1989. La influencia de la circulación atmosférica del Pacífico Norte en el caudal fluvial en el oeste. Aspectos de la variabilidad climática en el Pacífico y las Américas occidentales, 55, 375-397.
- Checkley, D. M. y Barth, J. A. 2009. Patterns and processes in the California Current System. Prog. Oceanogr. 83, 49-64.
- Diaz, M. E. V. 2023. Efecto del gradiente oceanográfico zonal y vertical sobre la estructura comunitaria del zooplancton en el Pacífico Sur Oriental (Tesis Doctoral, Universidad de Concepción. Perú).
- Droege, S., Cyr, A. y Lariveé, J. 2008. Checklists: An Under-Used Tool for the Inventory and Monitoring of Plants and Animals. Conservation Biology, 12(5), 1134-1138.
- Eastman, J. T. 2005. The nature of the diversity of Antarctic fishes. Polar Biology, vol. 28, pp. 93-107.
- Espinoza-Pérez, H. 2014. Biodiversidad de peces en México. Revista Mexicana de Biodiversidad, 85, 450-459.

- Fernández-Urruzola, I., Bode, A., Loick-Wilde, N., Schneider, W., Lindsay, D. y Escribano, R. 2023. Trophic ecology of midwater zooplankton along a productivity gradient in the Southeast Pacific. Frontiers in Marine Science, 10, 1057502.
- Fiedler, P. C, y Talley, L. D. 2006. Hidrografía del Pacífico tropical oriental: una revisión. Avances en oceanografía, 69 (2:4), 143-180.
- Frick, Eschmeyer. y van der Lann, 2017. Catálogo de peces. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.
 Consultado en diciembre de 2024).
- González, C. E., Medellín-Mora, J. y Escribano, R. 2020. Gradientes ambientales y patrones espaciales de copépodos calanoides en el Pacífico suroriental. Frontiers in Ecology and Evolution, 8, 554409.
- Harrison, T. y Whitfield, A. 2021. A global assessment of fish estuary associations: A numerical approach to assessing estuary-associated fish functional guilds. Fish and Fisheries, 22(5), 1-25.
- Hastings, P. A., Findley, L. T., y van der Heiden, A. M. 2010. Fishes of the Gulf of California. In: Brusca R (editor). The Gulf of California. Biodiversity and conservation. The University of Arizona Press, Tucson, Arizona, Pp. 96-118.
- Helfman, G. S., Collette, B. B., Facey, D. E. y Bowen, B. W. 2009. The diversity of fishes: Biology, evolution and ecology. 2^a edición. Wiley Blackwell. United States of America.
- IUCN. 2024. The IUCN Red List of Threatened Species. Version 2024-2. https://www.iucnredlist.org.
- Kocsis, A. T., Reddin, C. J. y Kieessling, W. 2018. The stability of coastal benthic biogeography over the last 10 million years. Global Ecology and Biogeography, 27 (9), 1106-1120.
- Mecklenburg, C. W., Lynghammar, A., Johannesen, E., Byrkjedal, I., Christiansen, J., Dolgov, A. V., Karamushko, O., Mecklenburg, T., Moller, P. R., Steinke, D. y Wienerroither, R. M. 2018. Marine Fishes of the Arctic Region. CAFF Monitoring Series Report 28. Finland.
- Nelson, J. S., Grande, T. C. y Wilson, M. V. 2016. Fishes of the World. 5^a Edición. John Wiley y Sons. New Jersey. United States of America.

- Robertson, D. R. y Allen, G. R. 2015. Shore fishes of the tropical eastern pacific: Online information system. Recuperado de: http://www.biogeo.db.stri.si.edu/sftep/en/pages.
- Royer, T. C, Grosch, C. E, y Mysak, L. A. 2001. Interdecadal variability of northeast Pacific coastal freshwater and its implications for biological productivity. Progress in Oceanography, 49 (1:4), 95-111.
- Sasaki, K. 2001. Sciaenidae: croakers (drums). FAO species identification guide for fishery purposes. In: Carpenter KE, Niem VH (eds) The living marine resources of the Western Central Pacific. Vol 5. Bony fishes part 3 (Menidae to Pomacentridae). UN FAO, Rome, p 3117–3174.
- Thompson, F. C. 2003. Nomenclature and classification, principles of. In: Resh, V. H. y Carde, R. T. (Eds.). Encyclopedia of Insects. Academic Press. United States of America. Pp. 798-807.
- Vasconcelos, R.P., Henriques, S., França, S., Pasquaud, S., Cardoso, I., Laborde, M. y Cabral, H. 2015. Global patterns and predictors of fish species richness in estuaries. Journal of Animal Ecology.
- Vega, C., Hernández-Guerrero, C. J. y Cruz-Barraza, J. A. 2012. Biogeografía de esponjas marinas (Phylum Porifera); estudios en el Pacífico Oriental. CICIMAR Oceánides, 27(1), 35-50.
- Whitfield, A. K., Able, K., Barletta, M., Blaber, S. J. M. y Harrison, T. D. 2023. Life-history guilds of fishes associated with estuaries: Opportunism versus dependency. Estuarine, Coastal and Shelf Science, 292, 10846.
- Yáñez-Arancibia, A. 1978. Taxonomía, ecología y estructura de las comunidades de peces en lagunas costeras con bocas efimeras del Pacífico de México. Cent Cien Mar Limnol UNAM 2:1, 306.
- Zydlewski, J. y Wilkie, M. P. 2012. Freshwater to Seawater Transitions in Migratory Fishes. Fish Physiology, 32, 253-326.

CAPÍTULO II

Concordancia entre una bioregionalizacion marino-costera y una delimitación estuarina basada en peces en el Pacífico Oriental

INTRODUCCIÓN

La biogeografía tiene la tarea de estudiar las distribuciones de los seres vivos con el objetivo de reconstruir la historia de la tierra y al mismo tiempo interpretar las distribuciones aplicando las teorías de la historia de la tierra y de la evolución orgánica (Patterson, 1983), utilizando bancos de datos, métodos y resultados que en apariencia parecen tan heterogéneos como la geografía física y la sistemática filogenética, la climatología y la ecología de las comunidades (Zunino y Zullini, 2016). En el campo de la ecología, la biogeografía ha sido importante en temas de conservación, debido a que los métodos empleados ayudan a identificar centros de especiación, regiones con taxones raros y endémicos, así como de delimitación de biorregiones, que son herramientas clave en la lucha contra la pérdida de biodiversidad (Whittaker *et al.*, 2005; Butchart *et al.*, 2010), puesto que permite una mejor planificación de las áreas naturales protegidas, así como visualizar los patrones de distribución de las especies.

Los ecosistemas estuarinos son cuerpos de agua costeros donde confluyen masas de agua tanto de origen marino como continental; el aporte de ambas masas de agua proporciona a los estuarios altos niveles de nutrientes tanto a lo largo de sus columnas de agua, así como en los sedimentos, lo que hace que sean hábitats altamente productivos tanto para las especies vegetales como animales que los habitan (NOAA, 2017). Estos ambientes presentan también una variabilidad espacio-temporal muy alta, especialmente en factores como la temperatura, la salinidad, el oxígeno, las corrientes de agua y profundidad. Así mismo pueden presentar diferentes tamaños y morfologías, desarrollando geoformas tales como lagunas, barras, deltas y fiordos por mencionar algunos (López-Herrera *et al.*, 2021).

La comunidad íctica estuarina está compuesta por especies tanto dulceacuícolas (peces secundarios) como marinas (eurihalinas y estenohalinas) y estuarinos residentes, quienes utilizan estos ambientes como zonas de descanso, crianza, reproducción y alimentación (López-Herrera *et al.*, 2021). Los estudios sobre regionalización marina y costera han sido escasos en los últimos años, su construcción es similar a la de las regionalizaciones hechas en ambientes terrestres, en donde suele evaluarse el nivel de endemismo de los taxones más representativos y con más información disponible (López-Herrera *et al.*, 2021). Los trabajos sobre regionalizaciones marinocosteras clásicas han sido las propuestas por Ekman (1953), Briggs (1974, 1995), Briggs y Bowen

(2012) y Spalding *et al.* (2007). Este último ha sido el estudio más completo, en el cual se obtuvo la regionalización biogeográfica global de 12 reinos, 62 provincias y 232 ecorregiones.

Los estudios de bioregionalización basados de las comunidades de peces estuarinos las encontramos en las investigaciones de Vasconcelos *et al.* (2015) y (2017), Henríquez *et al.* (2017a) y (2017b) y más recientemente con Harrison y Whitfield (2022). La información recopilada en la mayoría de estos estudios ha sido con base en literatura publicada, la cual debido a la escasez de datos han dado como resultado delimitaciones regionales mal representadas. Estudios como el de Villéger *et al.* (2012), han empleado la beta diversidad como herramienta para comparar las clasificaciones de peces estuarinos a diferentes escalas desde un enfoque tanto taxonómico como funcional.

El Pacífico Oriental ha sido, en la mayoría de las clasificaciones, subrepresentado debido a un limitado número de localidades incluidas. Por lo tanto, es necesario realizar una búsqueda más intensiva en diferentes fuentes para lograr una mejor delimitación de unidades biogeográficas. Debido a lo anterior, el objetivo principal de este capítulo fue determinar los patrones biogeográficos de peces asociados a ambientes estuarinos del Pacífico Oriental y determinar su concordancia con las unidades ecorregionales para esta región. Para esto se buscó responder las siguientes preguntas: a) ¿Cuáles son los patrones biogeográficos de los ambientes estuarinos del Pacífico Oriental basados en sus metaensamblajes de peces?; b) ¿Qué nivel de concordancia existe entre los patrones biogeográficos encontrados para ambientes estuarinos y las provincias marinocosteras?; c) ¿Cuál es el grado de correlación entre los patrones biogeográficos estuarinos y 13 variables ambientales predictoras?

MATERIALES Y MÉTODOS

ÁREA DE ESTUDIO

El Pacífico Oriental es una de las grandes regiones zoogeográficas marino-costeras del mundo, abarcando desde el mar de Chukotka (Punta Barrow, Alaska) hasta punta de Tierra de fuego (Chile); presentando una plataforma costera bastante estrecha, la cual se extiende hasta profundidades de 200 metros (Vega *et al.*, 2012). Spalding *et al.* (2007), clasificaron al Pacífico Oriental en 27 ecorregiones marino-costeras, de las cuales 20 pertenecen a la parte de la plataforma continental y siete a zonas insulares (Figura 13), estas ecorregiones están dentro de ocho provincias biogeográficas, seis ubicadas en la parte continental y dos en zonas insulares (Figura 12) y cuatro grandes reinos (Figura 11).

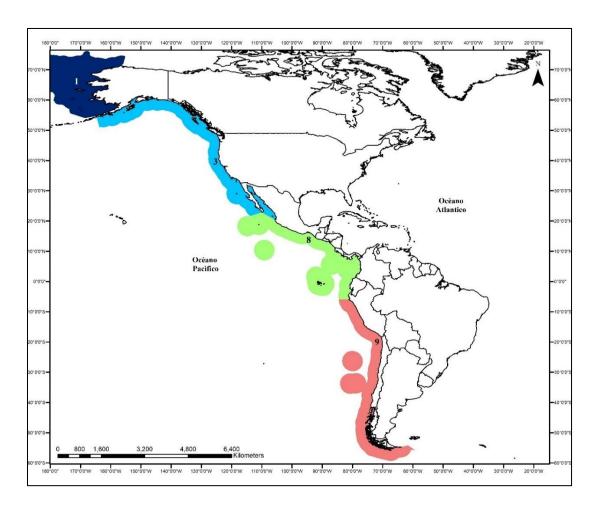


Figura 11. Clasificación de reinos para el Pacífico Oriental. Cada color y numeración representa un reino diferente. 1. Ártico, 3. Pacífico Norte Templado, 8. Pacífico Tropical Oriental y 9. América del Sur Templado.

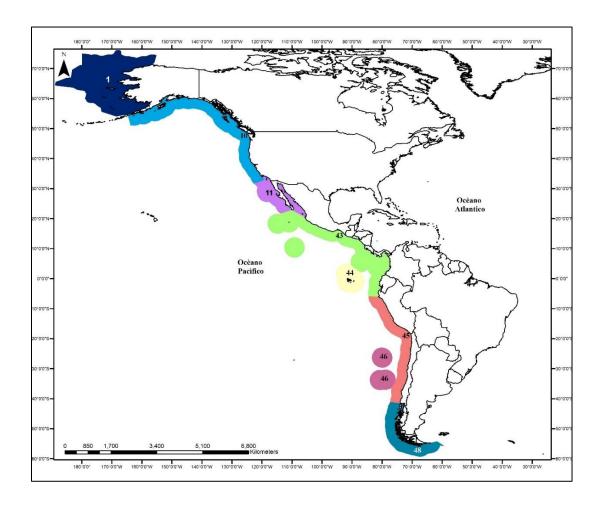


Figura 12. Clasificación de provincias biogeográficas para el Pacífico Oriental. Cada color y numeración representa un reino diferente. 1. Ártico, 10. Pacífico Nororiental Templado Frío, 11. Pacífico Nororiental Templado Cálido, 43. Pacífico Tropical Oriental, 44. Galápagos, 45. Pacífico Sureste Templado Cálido, 46. Juan Fernández y Desventuradas y 48. Magallánico.

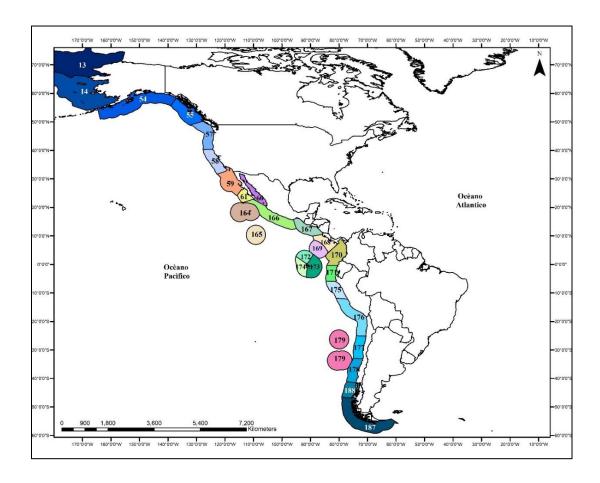


Figura 13. Clasificación de Ecorregiones propuestas por Spalding et al. (2007), para el Pacífico Oriental, cada número es un código que representa a cada ecorregión: 13. Chukchi Sea, 14. Eastern Bering Sea, 54. Gulf of Alaska, 55. North American Pacific Fijordland, 57. Oregon, Washington, Vancouver Coast and Shelf, 58. Northern California, 59. Southern California Bight, 60. Cortezian, 61. Magdalena Transition, 164. Revillagigedos, 165. Clipperton, 166. Mexican Tropical Pacific, 167. Chiapas–Nicaragua, 168. Nicoya, 169. Cocos Islands, 170. Panama Bight, 171. Guayaquil, 172. Northern Galapagos Islands, 173. Eastern Galapagos Islands, 174. Western Galapagos Islands, 175. Central Peru, 176. Humboldtian, 177. Central Chile, 178. Araucanian, 179. Juan Fernández and Desventuradas, 187. Channels and Fjords of Southern Chile y 188. Chiloense.

MÉTODO

ANÁLISIS DE INFORMACIÓN

Se realizó una matriz de datos de presencia-ausencia (1-0) bajo una revisión bibliográfica exhaustiva de la composición ictiofaunística de 104 localidades estuarinas del Pacífico Oriental (Tabs 11-14), teniendo como punto de referencia artículos científicos, capítulos de libro, tesis, informes y bases de datos de repositorio digitales. Para la inclusión de las especies se utilizaron criterios tales como el conocimiento de su distribución geográfica, los reportes de estudios consultados y su validación taxonómica mediante la base de datos en línea del Catálogo de peces de Eschmeyer (Eschmeyer *et al.*, 2024). En este estudio se excluyeron las especies de regiones insulares, así como las especies exóticas.

ANÁLISIS DE SIMILITUD: CLASIFICACIÓN Y ORDENACIÓN

La matriz generada se sometió a un análisis de clasificación jerárquica por conglomerados utilizando como algoritmo de agrupación el método de ligamiento promedio no ponderado (UPGMA). Para generar el UPGMA se utilizó una matriz de distancia basada en un Índice de disimilitud de Beta diversidad de Jaccard (Bjtu) (Baselga, 2010; 2012), el cual se basa en la proporción de reemplazo de especies entre dos sitios. Posteriormente, se realizó un análisis de correlación cofenética (Farris, 1969), el cual calcula la bondad de ajuste de los grupos del UPGMA calculando la correlación entre la matriz original y la matriz de distancia resultante. Un coeficiente >0.9 representa un muy buen ajuste; los valores entre 0.8 y 0.9, un buen ajuste; y los valores debajo de 0.8 un ajuste pobre (Rohlf, 1997).

Posteriormente, se utilizó la función de penalización de Kelley-Gadner-Sutcliff (KGS) con el paquete R maptree (White y Garmacy, 2015) para determinar el número de grupos presentes en el UPGMA realizado previamente, el KGS maximiza las diferencias entre todos los grupos del dendrograma, mientras conserva homogeneidad entre grupos (Ennen *et al.*, 2019). El KGS arroja como resultado una lista de dos columnas: en la primera columna se encuentra el número de grupos mientras que en la segunda el valor de la prueba para ese número de grupo; de esta tabla se selecciona el valor de la prueba más bajo, pues define el número óptimo de grupos en el UPGMA. Los resultados obtenidos en el UPGMA se representaron cartográficamente con las unidades espaciales de la ictiofauna obtenidas en los análisis de similitud, al fin de comprar las

regionalizaciones biogeográficas propuestas por Spalding *et al.* (2007), utilizando el software Arc GIS v. 10.8.

A fin de detectar posibles gradientes, los grupos identificados en el UPGMA fueron visualizados en un diagrama bidimensional de ordenación de análisis de escalamiento multidimensional no métrico (NMDS). Para evaluar la concordancia entre la eficiencia de la clasificación de Spalding *et al.* (2007) y la de los grupos biogeográficos detectados mediante la clasificación y ordenación en este estudio, se aplicó una prueba de validación cruzada LOOCV (Leave-One-Out Cross Validation) en un análisis canónico de coordenadas principales (CAP).

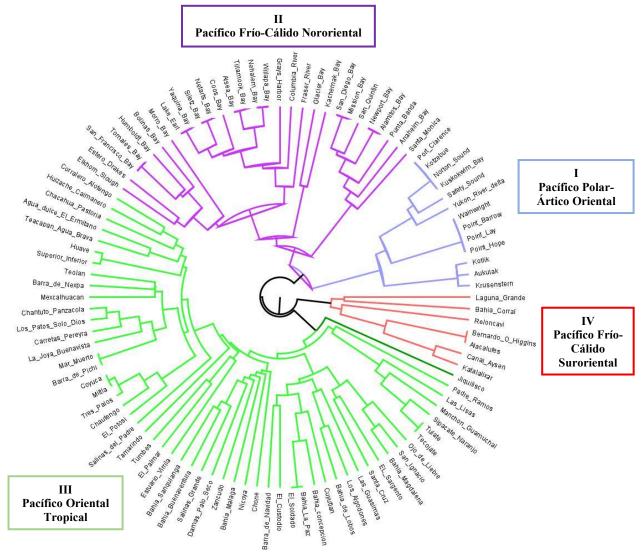
ANALISIS DE SIMILITUD PORCENTUAL

Los taxones más representativos para cada grupo formado se ponderaron con un análisis de similitud de porcentaje (SIMPER) en función a su contribución relativa a la frecuencia de su ocurrencia en cada grupo formado (Clarke, 1993).

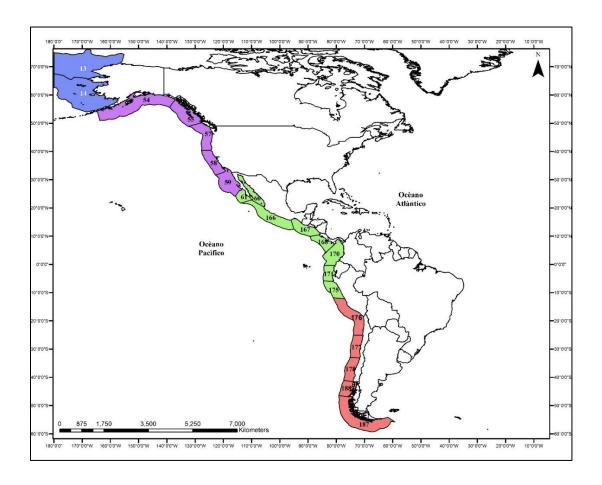
RELACIÓN DE LOS PATRONES BIOGEOGRÁFICOS CON PARÁMETROS AMBIENTALES

Por medio de portal Bio-Oracle se seleccionaron 13 variables ambientales, las cuales fueron las siguientes: hierro, fosfato, nitrato, silicato, salinidad, temperatura del aire, temperatura del océano, dirección del agua oceánica, cobertura de nubes, profundidad de la capa mixta, oxígeno disuelto, clorofila, atenuación difusa y fotosíntesis. La información de cada variable fue obtenida mediante los promedios de capas ráster, las cuales fueron ajustadas tanto en la latitud como en la longitud de cada uno de los polígonos de las ecorregiones propuestas por Spalding *et al.* (2007), para el Pacífico Oriental. Posteriormente se elaboró una base de datos con los promedios obtenidos de cada una de las variables para cada ecorregión evaluada, se verifico que no hubiera celdas vacías o sin valores y finalmente a cada variable se le calculó el promedio total de los promedios obtenidos.

Previamente se eliminaron las variables con mayor colinearidad ($r \le 0.8$), las cuales fueron la clorofila, el silicato y el fosfato. La base de datos generada se sometió a un modelo lineal basado en distancias utilizando un procedimiento Backward y el criterio de selección de Akaike esto con el objetivo de identificar el conjunto de las variables ambientales que mejor explicaron la estructura


de los metaensamblajes de los grupos identificados. y al final se consideraron un total de diez variables (Salinidad, temperatura del océano, temperatura del aire, fotosíntesis, nitrato, dirección del agua marina, atenuación difusa, oxígeno disuelto, hierro, profundidad de la capa mixta). Ya con las variables ambientales seleccionadas se sometió junto con la matriz de presencia-ausencia a un análisis de redundancias basado en distancias dbRDA esto para conocer que variables ambientales están influyendo para la composición y distribución de cada metaensambales de peces estuarinos.

Los análisis de conglomerados y de ordenación se llevaron a cabo en el programa de R versión 4.3.3 (R Core Team, 2024), mientras que el análisis de especies indicadoras y de modelación lineal, se llevaron a cabo en PRIMER6 + PERMANOVA.


RESULTADOS

IDENTIFICACIÓN DE REGIONES ESTUARINAS

El KGS determinó la formación de cuatro grupos, los cuales fueron señalados en el dendograma generado por el UPGMA (Fig. 14, Correlación cofenética = 0.89). Las características de dichos grupos se describen con detalle a continuación.

Figura 14. Dendrograma simplificado basado en el método de grupo de pares no ponderados por media aritmética (UPGMA) basado en el componente de recambio del índice de disimilitud de Jaccard (Bjtu; Baselga, 2012) de 969 especies de peces estuarinos, 104 localidades. Cada color indica un grupo diferente.

Figura. 15. Representación cartográfica de la agrupación de las ecorregiones propuestas por Spalding *et al.* (2007), con información recabada de especies estuarinas del Pacífico Oriental, con su respectiva especie indicadora para cada grupo formado; cada color designado es acorde a la coloración de los resultados obtenidos del dendograma del UPGMA.

REGIONES ESTUARINAS

Grupo I (Pacífico Polar-Ártico Oriental)

Está conformado por las ecorregiones 13. Chukchi Sea y 14. Eastern Bering Sea (Figura 16) con un total de 13 localidades. Este grupo presenta un total de 50 especies, dentro de ocho ordenes, 17 familias y 37 géneros. Los órdenes con más especies fueron los Salmoniformes (19) y los Perciformes (16), mientras que las familias mayor número de especies fueron Salmonidae (17) seguido de Psychrolutidae (6) y Pleuronectidae (6). Las especies representativas de este grupo fueron: Clupea pallasii (2.38), Oncorhynchus keta (4.76), Oncorhynchus kisutch (7.14), Oncorhynchus tshawytscha (9.52), Gasterosteus aculeatus (11.90), Ammodytes hexapterus

(14.29), Platichthys stellatus (16.67), Hexagrammos lagocephalus (19.05), Pallasina aix (21.43) y Hexagrammos stelleri (23.81).

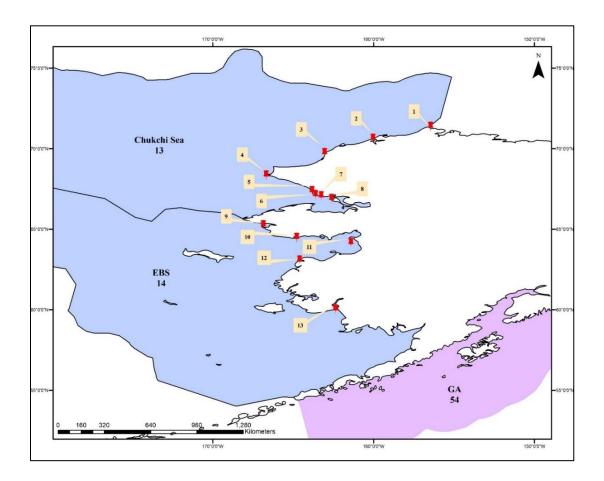


Figura 16. Localidades estuarinas del grupo I: 13. Chukchi Sea. Point Barrow (1), Wainwright (2), Point Lay (3), Point Hope (4), Kotlik Lagoon (5), Krusenstern Lagoon (6), Aukulak Lagoon (7), Kotzebue (8); 14. Eastern Bering Sea (EBS). Port Clarence (9), Safety Sound (10), Norton Sound (11), Delta River Yukon (12) y Kuskokwim Bay (13).

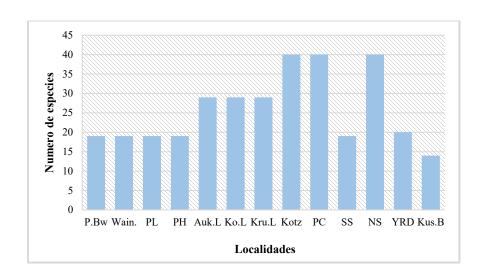


Figura 17. Riqueza de especies en las localidades estuarinas del grupo I. Pacífico Ártico-Polar Oriental: (P.Bw) Point Barrow, (Wain) Wainwright, (PL) Point Lay, (PH) Point Hope, (Ko.L) Kotlik Lagoon, (Kru.L) Krusenstern Lagoon, (Auk.L) Aukulak Lagoon, (Kotz) Kotzebue, (PC) Port Clarence, (SS) Safety Sound, (NS) Norton Sound, (YDR) Yukon Delta River y (KB) Kuskokwim Bay.

Grupo II (Pacífico Frio-Cálido Nororiental)

Este grupo está constituido por 29 localidades distribuidos en las ecorregiones. 54. Gulf of Alaska, 55. North American Pacific Fijordland, 57. Oregon, Washington, Vancouver Coast and Shelf, 58. Northern California y 59. Southern California Bight (Figura 18). Está representado por 265 especies, agrupados en 174 géneros, 90 familias y 38 órdenes. Los órdenes con mayores números de especies fueron los Perciformes (90), Blenniiformes (30) y Carangiformes (26). Las familias con mayor número de especies fueron Embiotocidae (18), Scorpaenidae (18), Psychrolutidae (17) y Pleuronectidae (15). Las especies representativas fueron las siguientes: *Clupea pallasii* (3.98), *Leptocottus armatus* (7.96), *Platichthys stellatus* (11.94), *Hypomesus pretiosus* (14.61), *Gasterosteus aculeatus* (17.28), *Ophiodon elongatus* (19.95), *Enophrys bison* (22.61), *Hexagrammos lagocephalus* (25.28), *Hexagrammos decagrammus* (27.95) y *Clinocottus acuticeps* (30.62).

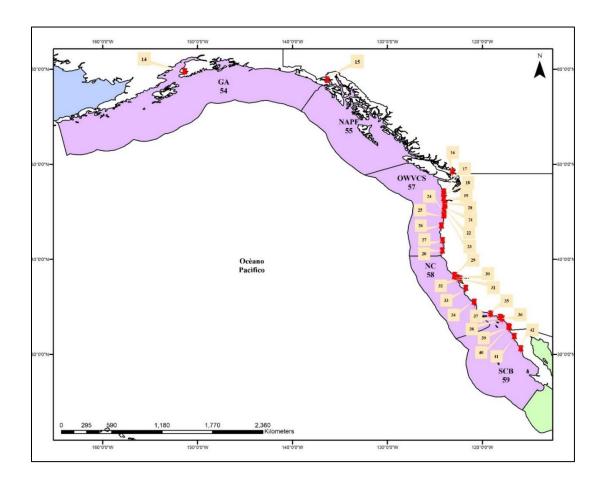


Figura 18. Localidades estuarinas del grupo II: 54. Gulf of Alaska (GA). Kachemak Bay (14); 55. North American Pacific Fijordland (NAPF). Glacier Bay (15); 57. Oregon, Washington, Vancouver Coast and Shelf (OWVCS). Fraser River (16), Grays Harbor (17), Willampa Bay (18), Columbia River (19), Nehalem Bay (20), Tillamook Bay (21), Netarts Bay (22), Siletz Bay (23), Yaquina Bay (24), Alsea Bay (25), Coos Bay (26), Lake Earl (27), Humboldt Bay (28); 58. Northern California (NC). Tomales Bay (29), Estero Drakes (30), Bolinas Bay (31), San Francisco Bay (32), Elkhorn Slough (33), Morro Bay (34); 59. Southern California Bight (SCB). Santa Mónica Lagoon (35), Alamitos Bay (36), Anaheim Bay (37), Newport Bay (38), Mission Bay (39), San Diego Bay (40), Punta Banda (41) y San Quintín (42).

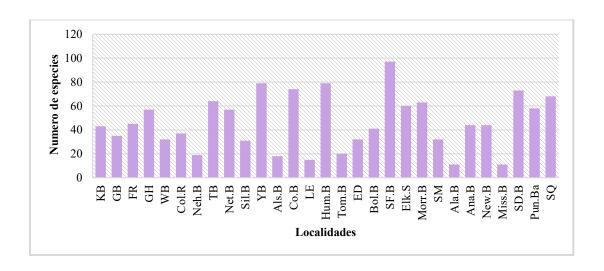


Figura 19. Riqueza de especies en las localidades estuarinas del grupo II. Pacífico Templado-Cálido Nororiental. (KB) Kachemak Bay, (GB) Glacier Bay, (FR) Fraser River, (GH) Grays Harbor, (WB) Willampa Bay, (Col.R) Columbia River, (Neh) Nehalem Bay, (TB) Tillamook Bay, (Net.B) Netarts Bay, (Sil.B) Siletz Bay, (YB) Yaquina Bay, (Als.B) Alsea Bay, (Co.B) Coos Bay, (LE) Lake Earl, (Hum.B) Humboldt Bay, (Tom.B) Tomales Bay, (ED) Estero Drakes, (Bol.B) Bolinas Bay, (SF.B) San Francisco Bay, (Elk.S) Elkhorn Slough, (Morr.B) Morro Bay, (SM.L) Santa Mónica Lagoon, (Ala.B) Alamitos Bay, (Ana.B) Anaheim Bay, (New.B) Newport Bay, (Miss.B) Mission Bay, (SD.B) San Diego Bay, (Pun.Ba) Punta Banda y (SQ) San Quintín.

Grupo III (Pacífico Oriental Tropical)

Este grupo está compuesto por 55 localidades, las ecorregiones que lo conforman son: 60. Cortezian, 61. Magdalena Transition, 166. Mexican Tropical Pacific, 167. Chiapas–Nicaragua, 168. Nicoya, 170. Panamá Bight, 171. Guayaquil y 175. Perú Central (Figura 20). Aquí se encuentra el mayor número de especies capturadas con un total de 682 especies dentro de 346 géneros, 130 familias y 39 órdenes. Las familias con más número de especies fueron Sciaenidae (47), seguido de Gobiidae (37), Haemulidae (27), Carangidae (26) y Engraulidae (20). Las especies más representativas fueron las siguientes: *Strongylura exilis* (0.94), *Pseudupeneus grandisquamis* (1.88), *Polydactylus approximans* (2.82), *Ctenogobius sagittula* (3.76), *Sphoeroides annulatus* (4.70), *Caranx caninus* (5.64), *Eucinostomus currani* (6.58), *Mugil setosus* (7.52), *Eucinostomus dowii* (8.46) y *Etropus crossotus* (9.40).

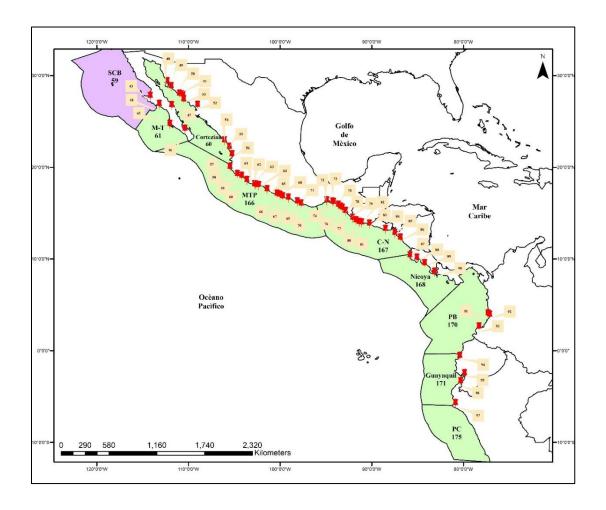


Figura 20. Localidades estuarinas del grupo III. Laguna Ojo de Liebre (43); 61. Magdalena Transition (M-T). Laguna San Ignacio (44), Bahía Magdalena (45); 60. Cortezian. Bahía La Paz (46), Bahía Concepción (47), Laguna El Sargento (48), Laguna Santa Cruz (49), Estero El Soldado (50), Laguna Las Guásimas (51), Laguna Los Algodones (52), Bahía Lobos (53), Laguna Huizache-Caimanero (54), Laguna Teacapan Agua Brava (55), Estero El Custodio (56); 166. Mexican Tropical Pacific (MTP). Laguna Agua Dulce El Ermitaño (57), Laguna Barra de Navidad (58), Laguna Cuyutlán (59), Laguna Salinas del Padre (60), Barra de Nexpa (61), Laguna Teolan (62), Laguna Mexcalhuacan (63), Barra de Pichi (64), Laguna El Potosí (65), Laguna Mitla (66), Laguna Coyuca (67), Laguna Tres Palos (68), Laguna Chautengo (69), Laguna Corralero Alotengo (70), Laguna Chacahua Pastoría (71); 167. Chiapas-Nicaragua (C-N). Laguna Superior Inferior (72), Huave (73), Laguna Mar Muerto (74), Laguna La Joya Buenavista (75), Laguna Los Patos Solo Dios (76), Laguna Carretas Pereyra (77), Laguna Chantuto Panzacola (78), Manchón-Guamuchal (79), Tulate (80), Tecojate (81), Sipacate-Naranjo (82), Las lisas (83), Bahía de Jiquilisco (84), Estero Padre Ramos (85), Estero Salinas Grandes (86); 168. Nicoya. Estero Tamarindo (87), Nicoya (88), Estero Damas Palo Seco (89), Estero Zancudo (90); 170. Panama Bight (PB) Bahía de Málaga (91), Bahía de Buenaventura (92), Bahía de Sanquianga (93); 171. Guayaquil. Chone (94), El Palmar (95), Tumbes (96) y 175. Perú Central (PC) Estero Verrila (97).

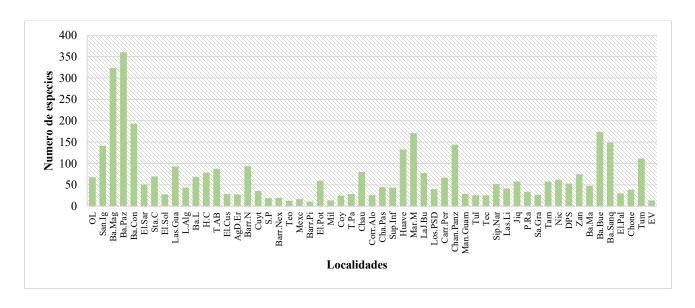


Figura 21. Riqueza de especies en las localidades estuarinas del grupo III. Pacífico Oriental Tropical. (OL) Laguna Ojo de Liebre, (San.Ig) Laguna San Ignacio, (Ba.Mag) Bahía Magdalena, (Ba.Paz) Bahía La Paz, (Ba.Con) Bahía Concepción, (El.Sar) Laguna El Sargento, (Sta.C) Laguna Santa Cruz, (El.Sol) Estero El Soldado, (Las.Gua) Laguna Las Guásimas, (Los.Alg) Laguna Los Algodones, (Ba.L) Bahía Lobos, (H.C) Laguna Huizache-Caimanero, (T.AB) Laguna Teacapan Agua Brava, (El.Cus) Estero El Custodio, (AgD.Er) Laguna Agua Dulce El Ermitaño, (Barr.Nav) Laguna Barra de Navidad, (Cuyt) Laguna Cuyutlán, (S.P) Laguna Salinas del Padre, (Barr.Nex) Barra de Nexpa, (Teo) Laguna Teolan, (Mexc) Laguna Mexcalhuacan, (Barr.Pi) Barra de Pichi, (El.Pot) Laguna El Potosí, (Mil) Laguna Mitla, (Coy) Laguna Coyuca, (T.Pa) Laguna Tres Palos, (Chau) Laguna Chautengo, (Corr.Alo) Laguna Corralero Alotengo, (Cha.Pas) Laguna Chacahua Pastoría, (Sup.Inf) Laguna Superior Inferior, Huave, (Mar.M) Laguna Mar Muerto, (LaJ.Bu) Laguna La Joya Buenavista, (Los.PSD) Laguna Los Patos Solo Dios, (Carr.Per) Laguna Carretas Pereyra, (Chan.Panz) Laguna Chantuto Panzacola, (Man-Guam) Manchón-Guamuchal, (Tul) Tulate, (Tec) Tecojate, (Sip.Nar) Sipacate-Naranjo, (Las.Li) Las lisas, (Ba.Jiq) Bahía de Jiquilisco, (P.Ra) Estero Padre Ramos, (Sa.Gra) Estero Salinas Grandes, (Tam) Estero Tamarindo, (Nic) Nicoya, (DPS) Estero Damas Palo Seco, (Zan) Estero Zancudo, (Ba.Ma) Bahía de Málaga, (Ba.Bue) Bahía de Buenaventura, (Ba.Sanq) Bahía de Sanquianga, Chone, (El.Pal) El Palmar, (Tum) Tumbes y (EV) Estero Verrila.

Grupo IV (Pacífico Frio-Cálido Sudoriental)

Este grupo está constituido por siete localidades, las cuales se encuentran en las ecorregiones 176. Humboldtian, 178. Araucanian, 187. Channels and Fjords of Southern Chile y 188. Chiloense (Figura 22). está constituido por un total de 74 especies dentro de 60 géneros, 49 familias y 21 órdenes. Los perciformes (19) fue el orden con más número de especies por otro lado, las familias con mayor número de especies fueron Nototheniidae y Atherinopsidae. Las especies

representativas fueron *Odontesthes regia* (23.19) y *Sebastes oculatus* (46.39) correspondientemente.

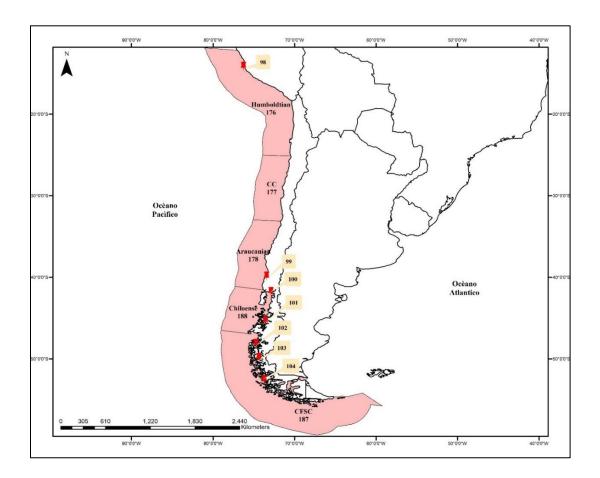


Figura 22. Localidades estuarinas del grupo IV: 176. Humboldtian. Laguna Grande (98); 178. Araucanian. Bahía de Corral (99); 188. Chiloense. Reloncavi (100), Canal Aysén (101); 187. Channels and Fjords of Southern Chile (CFSC). Katalalixar (102), Bernardo O Higgins (103) y Alacalufes (104).

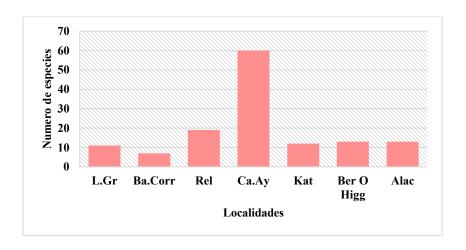
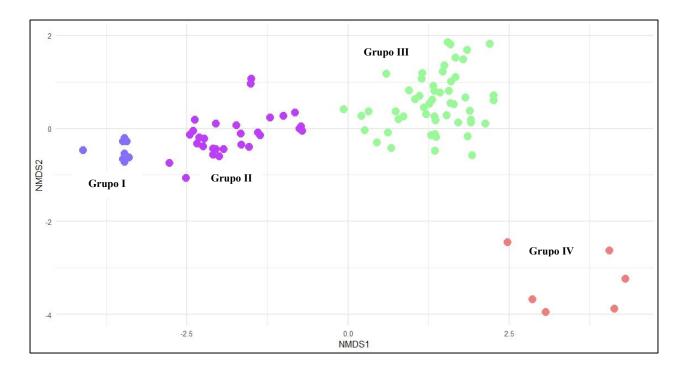


Figura 23. Riqueza de especies en las localidades estuarinas del grupo IV. Pacífico Templado-Cálido Sudoriental. (L.Gr) Laguna Grande, (Ba.Corr) Bahia del Corral, (Rel) Reloncavi, (Ca.Ay) Canal Aysén, (Kat) Katalalixar, (Ber O Higg) Bernardo O Higgins y (Alac) Alacalufes.

Las pruebas de validación cruzada LOOCV mostraron que la clasificación de Spalding *et al.* (2007), refleja en un 87. 37% la consistencia de las provincias biogeográficas considerando a los peces estuarinos, mientras que la consistencia para las ecorregiones fue de 55.34%. Por otro lado, la clasificación y ordenación de grupos realizada en este estudio, reflejó una consistencia del 93.20%, resultando significativo (δ^2 =0.96601, P=0.001). Para esta clasificación, el grupo menos consistente fue el grupo IV, ya que las siete localidades se asignaron erróneamente dentro del grupo III.


ANÁLISIS DE ORDENACIÓN BIDIMENSIONAL

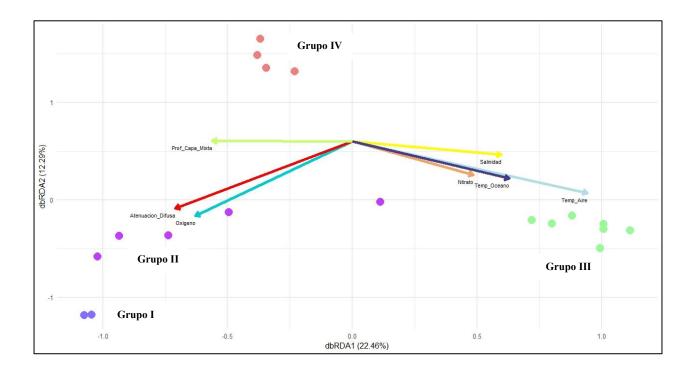
El gráfico de escalamiento multidimensional no métrico (NMDS) identificó que los cuatro grupos biogeográficos formados se distribuyen a través de un gradiente latitudinal (Figura 24), el valor de stress obtenido con la información a nivel de localidades fue de 0.049, el cual indica que hay una buena concordancia biológica de los grupos identificados. Los resultados muestran que dentro de cada grupo biogeográfico existen formaciones de subgrupos; Dentro del grupo I se forman tres subgrupos; el primero se ubica opuesto al lado izquierdo, que incluye las localidades estuarinas dentro del mar de Chukotka (Point Barrow hasta Point Hope); y los otros dos subgrupos que se encuentran en el eje dos de la ordenación; el subgrupo de la parte inferior son las localidades que van desde el sur del Mar de Chukotka (Kotlik Lagoon) hasta el norte del Mar de Bering (Port

Clarence), mientras el subgrupo de la parte superior son las localidades pertenecientes al sur del Mar de Bering (Safety Sound hasta Kuskokwing Bay).

En el grupo II también se encontraron la formación de tres subgrupos. El primero son las localidades estuarinas ubicados en el Golfo de Alaska (Kachomack Bay) y en los fiordos de América del Norte (Glacier Bay), que se ubican separados del grupo en la parte inferior izquierda; De una manera más agrupada en la parte superior derecha encontramos las localidades estuarinas que van desde Vancouver, Canadá (Fraser River) hasta el centro sur del estado de Oregón, EUA (Coos Bay); las localidades estuarinas del norte de California (Lake Earl) hasta el norte del Golfo de California (San Quintín, BCN, México) las encontramos un poco separadas una de otras.

En la agrupación geográfica tropical (grupo III) está dividido en dos subgrupos: el primero que va desde el norte del estado de Baja California Norte, México (Laguna Ojo de Liebre) hasta el sur del estado de Sonora (Bahía de Lobos) el cual se ubica en la parte inferior izquierda de la agrupación y el segundo que abarca desde el sur de Sinaloa, México (Laguna Huizache-Caimanero) hasta el norte de Perú (Estero Verrila) los cuales los vemos separados al costado derecho. Y por último tenemos la agrupación geográfica del Pacifico Frio-Cálido Sudoriental (Grupo IV) que resultaron ser muy diferentes a las tres agrupaciones geográficas anteriores, sus localidades se sitúan muy alejado en la parte inferior de la derecha del gráfico, todas ellas muy separadas de unas a otras (Figura 26).

Figura 24. Gráfico de escalamiento multidimensional no métrico (NMDS) asociado a la información de las especies de peces estuarinas a nivel localidad para el Pacífico Oriental basado con el índice de Jaccard. Cada color designado es acorde a la coloración de los resultados obtenidos del dendograma del UPGMA.


PARÁMETROS AMBIENTALES

En la prueba marginal del modelo lineal se encontraron nueve variables ambientales significativas, de las cuales siete variables ambientales en interacción nos explican el 71% de la formación de las agrupaciones biogeográficas, las cuales fueron: la salinidad, el oxígeno disuelto, la profundidad de la capa mixta, los niveles de nitrato, la temperatura tanto del océano como del aire y la atenuación difusa (Tabla 1).

Los resultados obtenidos en el análisis de redundancias basado en distancias (dbRDA), las variables ambientales que influyeron en la composición y distribución de la ictiofauna estuarina en los grupos biogeográficos, tanto del Pacífico Ártico-Polar Oriental (grupo I) como del Pacífico Frío-Cálido Nororiental (grupo II) y Sudoriental (grupo IV) fueron la atenuación difusa, el oxígeno disuelto y la profundidad de la capa mixta. Las direcciones de estas variables indican que su influencia es mayor en los grupos I y II siendo la atenuación difusa la variable más influyente seguido del oxígeno disuelto y en menor medida la profundidad de la capa mixta. En contra parte, podemos observar que la influencia de estas variables es menor en el grupo IV, debido a que las

direcciones ambientales no van dirigidas a hacia el eje y cuadrante en donde se encuentra. Por otra parte, vemos que las agrupaciones de las localidades del sur de California están más influenciadas por las variables tropicales, situándose dentro del cuadrante positivo.

En las agrupaciones biogeográficas tropicales (grupo III) situadas dentro del cuadrante positivo del eje 1, la salinidad, el nitrato, así como la temperatura del aire y del océano fueron las variables ambientales que explican la composición de la ictiofauna estuarina. La dirección de las directrices indica que existe una alta influencia en cada una de las variables en cada una de las agrupaciones biogeográficas, siendo en mayor medida la temperatura del aire, seguido de la temperatura del océano, los niveles de salinidad y del nitrato. El conjunto de las dos dimensiones explica un total de 34.75% de la variabilidad del modelo de ordenación siendo el mayor porcentaje de variancia explicada por el eje uno (Figura 25).

Figura 25. Gráfico del análisis de redundancias basado en distancias dbRDA para variables ambientales seleccionadas para el Pacífico Oriental. Cada punto es una ecorregión evaluada, la coloración de cada punto va en relación con los resultados obtenidos en el UPGMA.

Tabla 1. Resultados del modelo lineal basado en distancias para identificar al conjunto de variables ambientales que mejor explican la variabilidad de los metaensamblajes de peces en grupos del Pacífico Oriental. Significancia de cada variable testada de manera individual.

TEST MARGINAL					MODELO SELECCIONADO	
Variables	SS	F	P	Varianza explicada %	Variables seleccionadas	Mejor modelo
Fotosíntesis	13934	3.7302	0.001	0.18906	+Nitrato	AIC: 149.18
Hierro	9782	2.4486	0.001	0.13273	+Oxígeno	R2: 0.714
					disuelto	RSS: 21082
Nitrato	8671.8	2.1336	0.009	0.11766	+Salinidad	
Oxígeno disuelto	10556	2.6746	0.001	0.14322	+Temperatura	
					del aire	
Salinidad	10233	2.5798	0.001	0.13885	+Temperatura	
					del océano	
Temperatura del	15322	4.1992	0.001	0.20789	+Atenuación	
aire					difusa	
Temperatura del	8706.7	2.1434	0.009	0.11814	+Profundidad de	
océano					capa mixta	
Atenuación	10335	2.6096	0.003	0.14023		
difusa						
Profundidad de	9695.5	2.4237	0.001	0.13155		
la capa mixta						
Dirección del	5483.6	1.2861	0.174	7.4403E-2]	
agua						

DISCUSIÓN

AGRUPACIONES BIOGEOGRÁFICAS ESTUARINAS DEL PACÍFICO ORIENTAL

En este estudio se demostró que los peces son un grupo adecuado para definir regiones biogeográficas de estuarios a lo largo de las costas del Pacífico Oriental. Los resultados sugieren que las regiones formadas están determinadas por un conjunto de parámetros fisicoquímicos del agua y del ambiente. Hasta la fecha, las regionalizaciones sobre ambientes estuarinos utilizando su ictiofauna han sido a escalas globales, sin que exista una regionalización solo para el Pacífico Oriental. Harrison y Whitfield (2022), mencionan que, en dichos estudios globales, entre los cuales los encontramos a Vasconcelos *et al.* (2015; 2017) y Henríquez *et al.* (2017a;2017b), sus resultados presentaron subrepresentaciones biogeográficas del Pacífico Oriental, probablemente por la insuficiencia de información en su base de datos.

Las agrupaciones biogeográficas identificadas en este estudio concuerdan con los reinos biogeográficos propuestos por Spalding *et al.* (2007), para la agrupación del Pacífico Ártico-Polar Oriental (Grupo I) y la regionalización propuesta por Harrison y Whitfield (2022), para la agrupación del Pacífico Frio-Cálido Sudoriental (Grupo IV). En contraparte, se obtuvo una biorregionalización diferente en las agrupaciones biogeográficas del Pacífico Frio-Cálido Nororiental (grupo II) y del Pacífico Oriental Tropical (grupo III), los cuales detallaremos a continuación.

Spalding *et al.* (2007), identifican un reino biogeográfico templado-frio para el Pacífico Nororiental, el cual va desde el Golfo de Alaska pasando por las islas Aleutianas hasta el Mar de Cortez, y a su vez, dividen este reino biogeográfico en dos provincias biogeográficas templadas, la primera que va desde el Golfo de Alaska hasta el sur de California (EUA) (Pacífico Nororiental templado-frío) y la segunda que abarca al Mar de Cortez (Pacífico Nororiental templado-cálido). Briggs y Bowen (2012), dividen el Pacífico Nororiental en cuatro provincias biogeográficas templadas (Aleutiano, Oregón, CTZ y California) que van desde el Golfo de Alaska pasando por las islas Aleutianas hasta el Golfo de California. Por su parte Harrison y Whitfield (2022), proponen que los límites biogeográficos fríos-templados del Pacífico Nororiental se extiendan desde la parte oriental del Mar de Bering hasta Punta Concepción, en el estado de California (EUA).

Los resultados no concuerdan parcialmente con las propuestas biogeográficas establecidas por los trabajos anteriormente mencionados. A diferencia del listado de especies utilizado en este estudio, Harrison y Whitfield (2022), no tomaron en consideración la información íctica estuarina del Ártico argumentando que la mayor parte del año, los ambientes intermareales se encuentran congelados junto a la plataforma continental, sin embargo, en este estudio decidimos incluir la parte ártica (cuatro localidades), el existir listados de peces para esta zona (Craig, 1989). Con ello, los resultados sugieren que la zona oriental del Mar de Bering forma parte de la agrupación biogeográfica del Pacífico Ártico-Polar Oriental junto con las localidades estuarinas ubicadas en el Mar de Chukotka, mientras que los limites biogeográficos de la agrupación del Pacífico Frio-Cálido Nororiental se extiende desde el Golfo de Alaska hasta el centro del Golfo de California (Bahía San Quintín, México).

La topografía presente en la agrupación geográfica Ártica-Polar propuesta es en gran parte plana o ligeramente ondulada con presencia de numerosos lagos y ríos. Los caudales de los ecosistemas loticos están influenciado tanto por las precipitaciones, así como por el deshielo del hielo y la nieve alcanzando sus máximos niéveles entre mayo y junio, la mayoría de estos ríos se mantienen con temperaturas bajas durante el verano y se congelan durante el invierno a excepción de los ríos que mantienen una conexión con manantiales perennes. Por otro lado, la agrupación geográfica del Pacífico Frio-Cálido Nororiental presenta abundantes recursos hídricos compuesto por varias intersecciones de sistemas lacustres y fluviales con amplias llanuras y una topografía ondulada. Los ríos presentes en las costas de Oregón presentan drenajes dendríticos escarpados los cuales muchos de ellos desembocan en estuarios de gran tamaño, así mismo, los ríos y arroyos frente a las costas del norte de California presentan caudales relativamente lentos (FEUW 2025).

Para las zonas tropicales la propuesta de regionalización para la agrupación biogeográfica del Pacífico Oriental Tropical presenta diferencias sustanciales con las regionalizaciones biogeográficas propuestas por Spalding *et al.* (2007) y Briggs y Bowen (2012), ya que, aunque ambos establecen casi los mimos limites biogeográficos iniciales (cerca de la desembocadura del Golfo de California) pero difieren en los limites biogeográficos hacia el sur. Tanto los reinos y provincias biogeográficas de Spalding *et al.* (2007), señalan que el Pacífico Tropical Oriental llega hasta el norte de Perú (Cabo Blanco) mientras que Briggs y Bowen (2012), refieren que estos límites llegan hasta el norte de Ecuador. Sin embargo, la regionalización de Harrison y Whitfield (2022), fue bastante cercana a los resultados que obtuvimos en nuestro estudio. Si bien no diferimos en los limites biogeográficos finales que se encuentran en las zonas tropicales sudamericanas (costas del centro de Perú) si obtuvimos un límite biogeográfico inicial diferente, por lo cual se propone que el inicio de esta agrupación biogeográfica comienza desde el centro del Golfo de California (Laguna Ojo de Liebre, México) y la costa continental del Mar de Cortez.

Castellanos *et al.* (2012), señalan que dentro de la región geográfica del Pacífico Tropical Oriental las principales diferencias biogeográficas basadas en peces ocurren solamente entre dos provincias: la provincia de Cortez y la Panámica, debido a diferencias geomorfológicas, oceanográficas y climáticas notables (Briggs y Bowen, 2012). Por otro lado, pueden existir subgrupos debido a condiciones ambientales o geomorfológicas locales, por ejemplo, Romero-

Berny *et al.* (2018), mencionan que las localidades estuarinas ubicadas en la zona del Istmo de Tehuantepec (estados de Oaxaca y Chiapas) presenta un intercambio importante de especies estuarinas tanto con la provincia Corteziana así como la Panamica, con un dominio de las especies de derivación tropical sobre las de origen templado, lo cual resulte que ambas provincias se alinean bajo la misma agrupación biogeográfica.

Entre las agrupaciones biogeográficas del Pacífico Frio-Cálido Nororiental y el Pacífico Oriental Tropical está presente la corriente oceánica de California, la cual se caracteriza por su temperatura, salinidad, sus niveles de oxígeno y fosfatos (Reid *et al.*, 1958; Lynn y Simpson, 1987). Esta corriente oceánica está compuesta por cuatro masas de agua (Corriente de California, la Contracorriente de California, la Contracorriente del sur de California) (Wyrtki, 1965), las cuales se extienden desde el centro de Columbia Británica (Canadá) hasta el centro de la bahía de California. Harrison y Whitfield (2022), refieren que esta corriente oceánica muy probablemente actúe como una barrera oceanográfica ya que impide el desplazamiento de varias especies de peces estuarinos de zonas tropicales hacia lugares más templados o viceversa.

Los cuerpos estuarinos subtropicales del Mar de Cortez se caracterizan por ser más pequeños, estas se encuentran en una región árida que puede dar origen a antiestuarios (salinidad >35 ups). Las precipitaciones suelen presentarse durante la época invernal (<300 mm), las cuales son relativamente bajas lo que origina que los ríos sean de bajo caudal y permanezcan secos gran parte del año (Conteras, 2010). En contra parte, los estuarios tropicales del Pacífico mexicano y América media, en su mayoría de origen volcánico, presentan un régimen de precipitaciones más alto, el cual se difieren en dos estaciones (Iluvias y secas). Los ríos de esta región por lo general son relativamente cortos, presentado caudales que dependen fuertemente de las estaciones de Iluvias, los cuales pueden llegar ser muy caudalosos o verse reducidos considerablemente pero jamás se secan (a excepción de los ríos más pequeños) (FEUW 2025). Por otro lado, las localidades estuarinas situadas entre Panamá y el norte de Perú se caracterizan por sus altas precipitaciones y descargas fluviales además de presentar cuerpos estuarinos sinuosos y de mayor tamaño (Miloslavich *et al.*, 2011).

La agrupación geográfica del Pacífico Frío-Cálido Sudoriental (Grupo IV) está presente la corriente oceánica Humboldt, la cual se extiende a lo largo de las costas del norte Perú hasta el extremo sur de Chile. Se caracteriza principalmente por sus aguas frías, ricas en nutrientes y bajas salinidades, que fluyen hacia el ecuador (Miloslavich *et al.*, 2011). Harrison y Whitfield (2022), mencionan que al igual que la corriente oceánica de California la corriente oceánica de Humboldt actúe también muy probablemente como una barrera oceanográfica la cual impide la dispersión hacia el sur de las especies ícticas estuarinas de las zonas tropicales, con la diferencia que esta actúe como una barrera menos infranqueable, lo que explica la baja riqueza de peces estuarinos en esta zona. Así mismo, ambos autores mencionan que las condiciones áridas de los desiertos de Sechura y Atacama muy probablemente también influyan en la baja composición de las comunidades estuarinas, dado a que esta región solo cuenta con pocos ríos perennes y los sistemas lagunares presentan condiciones salobres muy altas.

Jury y Alfaro-García (2024), indican que la Cordillera de los Andes proporciona a las costas peruanas una escorrentía vital, a su vez, actúa como una barrera que bloquea parcialmente la salida de la humedad de la cuenca del rio de las Amazonas y acelera los vientos anticiclónicos del sureste lo que origina las bajas precipitaciones de la zona. Por otro lado, la surgencia costera provocada por la corriente de Humboldt sumado el flujo de calor negativo y el flujo de aire divergente hacia el ecuador se combinan para generar una subsidencia atmosférica, por lo que las nubes estratiformes quedan atrapadas dentro de una capa límite marina superficial, incapaces de provocar convección lo que ocasiona la aridez de las costas del centro y sur de Perú y la parte del norte de Chile (Jury, 2024). Estas condiciones originan la formación de pequeños ríos y arroyos, los cuales están escasamente desarrollados y pocos presentan un flujo continuo de agua (FEUW, 2025).

Anteriormente Spalding *et al.* (2007), reconocen la existencia de dos provincias templadas en esta subregión la cual la primera se extiende Cabo blanco, Perú hasta la isla Chiloe (Provincia Templado-Cálido del Pacifico Sureste) y la segunda la cual abarca desde la isla Chiloe hasta el Golfo de San Matías en las costas argentinas (provincia Magallánica). Por su parte, Briggs y Bowen (2012), reconocen la existencia de tres provincias biogeográficas en esta zona (Perú-chileno, Sur de Chile y Tierra de Fuego) los cuales se extienden desde el Golfo de Guayaquil hasta la península de Taito, Chile. Nuestros resultados concuerdan con la regionalización propuesta por Harrison y

Whitfield (2022), los cuales agrupan toda región en un gran grupo que va desde las costas del centro de Perú hasta los limites oceanográficos del Pacífico Oriental (Tierra de Fuego, Chile).

VARIABILIDAD AMBIENTAL EN LAS AGRUPACIONES BIOGEOGRÁFICAS ESTUARINAS DEL PACÍFICO ORIENTAL

Dada su compleja historia geológica, la costa del Pacífico Oriental se caracteriza por ser un área de colisión con litorales escarpados, alta actividad tectónica y una plataforma continental estrecha. Esta región exhibe una variedad de condiciones hidrodinámicas, flujos de sedimentos y características orgánicas y geoquímicas del sustrato (Bosboom y Stive, 2023), que crean diferentes condiciones ambientales y recursos que influyen en la variabilidad de los cuerpos estuarinos (Velázquez-Pérez *et al.*, 2024). En este estudio se encontró que las variables ambientales que mejor explican la composición de los metaensamblajes de peces estuarinos fueron la salinidad, los niveles de nitrato, la profundidad de la capa mixta superficial, el oxígeno disuelto, la atenuación difusa y las temperaturas del aire y del océano. A continuación, se describe la influencia de cada variable la definición de los metaensamblajes y sus agrupaciones.

Dossa *et al.* (2021), catalogan a la salinidad superficial del mar como la variable climática esencial de los océanos, dado a que es el principal influyente ambiental en el ciclo del agua en su interfaz entre el océano y atmósfera, donde ocurre la mayoría de los flujos de agua. A su vez, señalan que en patrones espaciales a gran escala la salinidad es el principal equilibrio entre la evaporación y la precipitación. Dentro de los ambientes estuarinos, la salinidad desempeña un importante rol en la estructuración y composición de los patrones espaciales tanto en las propiedades físicas, como en la biota y en los procesos bioquímicos (Cloern *et al.*, 2017), el cual puede variar tanto horizontal como verticalmente esto dependiendo según Whitfield (2021), de la morfología del estuario, el caudal del rio, los vientos predominantes y los regímenes mariales. Para las regiones áridas y semiáridas Whitfield (2021), señala que la evaporación de la superficie de los estuarios puede superar considerablemente a la precipitación y la escorrentía fluvial.

En las regiones tropicales, los niveles de evaporación son superiores a los niveles de precipitación, el cual origina que en estas regiones encontremos los mayores rangos de salinidad. En contraparte, las regiones de latitudes altas presentan altos índices de precipitaciones y de

escorrentía de grandes y pequeños ríos aunado al deshielo continental, lo que ocasiona que los niveles de evaporación y de salinidad sean menores (Dossa *et al.*, 2021). Los índices de salinidad de las localidades estuarinas del Pacífico Oriental Tropical van presentando diferentes variaciones a lo largo de un gradiente latitudinal. Las localidades estuarinas más cercanas al Ecuador presentan los niveles salinidad más bajas, debido a que se encuentran dentro de una zona con altas tasas de precipitación y escorrentía fluvial, el cual genera una zona denomina La Piscina de Agua Dulce del Pacífico Oriental, la cual se extiende más allá de la plataforma continental llegando abarcar las costas del norte de Ecuador hasta la bahía de Panamá (Chen *et al.*, 2022), lugar en donde se alcanza el nivel más bajo de salinidad dentro del Pacífico Oriental Tropical (Torres-Parra *et al.*, 2024). En contraste, las localidades estuarinas presentes en las costas del Pacífico Tropical Mexicano (entre los estados de Colima, Michoacán, Guerrero y Oaxaca) las salinidades son las más elevadas debido a la fuerte estratificación estacional que existe en esta zona (Portela *et al.*, 2018).

Prum et al. (2024), refieren que la temperatura de los ecosistemas estuarinos está influenciada tanto por la temperatura del aire, así como la temperatura del océano, esto dado a que la temperatura de las aguas continentales conserva considerablemente la influencia de las temperaturas del aire terrestre Whitfield (2021). El fenómeno de El Niño-Oscilación del Sur o ENSO son las variaciones en las condiciones atmosféricas y oceánicas derivadas de las variaciones en las temperaturas superficiales del mar y la presión atmosférica en el Océano Pacífico Tropical (McGregor y Ebi, 2018). Este fenómeno se caracteriza por fluctuaciones irregulares entre condiciones frías (La Niña) y cálidas (El Niño). Durante su fase cálida, la temperatura de superficial del mar aumenta significativamente más de lo habitual, debido al debilitamiento de los vientos alisios y un desplazamiento de la convección hacia el este, que arrastra las aguas cálidas del Pacífico Occidental hacia el Pacífico Oriental Tropical (Fredriksen et al., 2020). A su vez, Chen et al. (2018), mencionan que durante el desarrollo de la fase cálida de ENSO el Pacífico Nororiental presenta un amento en sus índices de precipitaciones. Sathicq et al. (2015), señalan que durante la fase cálida de ENSO, este puede llegar afectar la temperatura dentro de los ecosistemas estuarinos.

Dado a las condiciones descritas anteriormente, las temperaturas tanto del aire como del océano de las localidades estuarinas del Pacífico Tropical Oriental son superiores a las de las localidades de latitudes altas, siendo los estuarios desde el norte de Perú (Estero de Verilla) hasta

la bahía de Panamá los que mayores temperaturas registraron dado a los altos niveles de evaporación en la región, por lo contrario, los estuarios de las costas mexicanas (desde Chiapas hasta Colima) presentan una disminución mínima en sus temperaturas.

El oxígeno disuelto presenta un papel primordial en la regulación de las actividades biológicas, así como de los procesos biogeoquímicos de la fauna estuarina y costera (Xiuqin *et al.*, 2020). Hutchings *et al.* (2024), mencionan que el oxígeno disuelto es un parámetro importante sobre la calidad que presentan los cuerpos estuarinos, el cual se ve influenciado por múltiples condiciones ambientales, entre ellos la temperatura del agua y la salinidad, a medida que estos dos vayan presentado un amento en sus índices causa una disminución a la concentración de oxígeno disuelto dentro de las aguas estuarinas, por lo contrario, al presentarse una alta presión atmosférica el oxígeno disuelto aumenta a medida que disminuye la eficiencia de su exsolución. Así mismo, Xiuqin *et al.* (2020), afirman que la eutrofización es el proceso bioquímico principal en el agotamiento de oxígeno disuelto en las zonas estuarinas-costeras.

El grado de turbidez dentro de los cuerpos de agua estuarinos esta influenciado indirectamente con la concentración de oxígeno disuelto (Pearce y Schumann, 2003). El coeficiente de atenuación difusa Campos-Gomes *et al.* (2018), lo definen como la disminución exponencial de la irradiancia ambiental descendente con la profundidad, por lo cual, está relacionado con la penetración y disponibilidad de la luz, el cual se puede utilizar como una herramienta de predicción de la profundidad eufórica. Una de las principales causas de la turbidez dentro de los cuerpos de agua estuarinos según Zhu *et al.* (2021) y Whitfield (2021), son la geología de la cuenca, a través de las escorrentías de los ríos, el cual trasporta materia orgánica, así como sedimentos de los fondos fluviales, así como el resultado de las mareas, los gradientes de densidad inducidos por la salinidad, las ráfagas de viento, la morfometría estuarina y la producción del fitoplancton.

Old *et al.* (2019), se refieren a la profundidad de la capa mixta superficial como la columna de agua que presenta valores casi uniformes entre la salinidad, la temperatura y la densidad. A su vez, Ruch *et al.* (2023), mencionan que esta variable se caracteriza por sus propiedades hidrográficas bien mezcladas, el cual presenta ciclos estacionales marcados. Refieren que sus mayores indicies de profundidades están presentes durante el invierno mientras que en verano están

presentes sus índices más bajos. Así mismo, señalan que sus propiedades están sujetas a forzamientos atmosféricos, como el viento, el calor y el agua dulce, los cuales, conducen a variaciones de la capa mixta a escalas del tiempo y dan como resultado una distribución latitudinal. Dentro de los cuerpos de agua estuarinos, Ahonen *et al.* (2023), mencionan esta variable ambiental interviene directamente en la disponibilidad de luz, así como el suministro de nutrientes.

Las localidades estuarinas Árticas-Polares y Subárticas (Kachemak Bay y Glacier Bay) presentaron una mayor solubilidad de oxígeno disuelto, así como una mayor penetración de luz solar, debido a sus bajas temperaturas y salinidades, sumado a su poca productividad primaria, así como sus bajos porcentajes de precipitación el cual conlleva a un mínimo de arrastre de sedimentos hacia los cuerpos estuarinos. En las localidades estuarinas subtropicales (entre el sur del estado de California EUA y el norte y centro Baja California, México), tienden a inclinarse con variabilidades que van más dirigidas a zonas más tropicales esto como resultado en sus niveles de evaporación, el cual resulta con un incremento a comparación con las regiones más templadas, lo que representa un incremento en la producción de agua salina en la superficie, el cual debilita el grado de estratificación superior y reduce la profundidad de penetración de luz solar y la solubilidad de oxígeno disuelto (Old *et al.*, 2019).

La hipoxia es una condición ambiental en donde las concentraciones de oxígeno disuelto disminuyen a muy bajos niveles, los cuales pueden traer consigo consecuencias negativas a la ictiofauna. Esta condición por lo general se presenta de forma natural en zonas oceánicas, pero también se ha documentado en algunas regiones costeras tales como costa central de Perú y la costa patagónica de Chile (Fuenzalida *et al.*, 2009; Silva *et al.*, 2009). Los fiordos patagónicos chilenos son unos de los ecosistemas estuarinos más grandes del mundo (Silvia y Vargas, 2014), los cuales están expuestos a una variabilidad atmosférica sustancial, con marcadas oscilaciones en el viento, la precipitación y la temperatura, los cuales son continuamente azotados por ciclones superficiales (el cual trae consigo el desplazamiento de grandes concentraciones de sedimentos y materia orgánica), fuertes ráfagas de vientos y sistemas frontales acompañantes (Garreaud *et al.*, 2009; Pérez-Santos *et al.*, 2019). Linford *et al.* (2023), recopilaron información de la temperatura, la salinidad y el oxígeno disuelto de los fiordos patagónicos chilenos mediante la combinación de datos in situ de 2016 a 2022, teledetección satelital y resultados de un modelo físico-

biogeoquímico. Este estudio demostró que los bajos índices de oxígeno disuelto de los fiordos chilenos se deben a la asociación de la advección de la corriente oceánica subterránea ecuatorial, el cual está compuesto por aguas desoxigenadas, a la corriente Submarina Perú-Chile, en donde lo trasporta hacia el sur de punta de Tierra de Fuego.

Dado a las condiciones descritas anteriormente, las localidades estuarinas del Pacífico Frío-Cálido Sudoriental presenta las concentraciones tanto de oxígeno disuelto y atenuación difusa más bajas de las agrupaciones biográficas de altas latitudes. Nuestros resultados son bastante similares a los resultados obtenidos por Silvia y Vargas (2014), en donde evaluaron las concentraciones de oxígeno disuelto de los fiordos de la Patagonia chilena con base en datos históricos de salinidad, oxígeno disuelto y nutrientes de 1200 estaciones oceanográficas. En contraparte, en las localidades estuarinas tropicales al presentar una mayor productividad primaria, así como porcentajes de precipitaciones más elevados el cual conlleva a grandes cantidades de escorrentía cargados con altos índices de materia orgánica, así como de sedimentos sumado a sus altas salinidades y temperaturas combinado con una circulación lenta en sus regímenes mariales (Duteil *et al.*, 2018), esto da lugar a altos niveles de turbidez lo que resulta una disminución en el oxígeno disuelto así como en la cantidad de luz que entra en las colunas de agua.

REFERENCIAS BIBLIOGRÁFICAS

- Ahonen, S. A., Seppälä, J., Karjalainen, J. S., Kuha, J. y Vähätalo, A. V. 2023. Increasing air temperature relative to water temperature makes the mixed layer shallower, reducing phytoplankton biomass in a stratified lake. Freshwater biology, 68(4), 577-587.
- Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134-143.
- Baselga, A. 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21: 1223-1232.
- Bosboom, J. y Stive, M. 2023. Coastal Dynamics, v1. 2. Delft University of Technology: Delft, The Netherlands, 39-46.
- Briggs, J. C. 1974. Marine zoogeography. McGraw Hill. New York. United States of America.
- Briggs, J. C. 1995. Global biogeography, developments in paleontology and stratigraphy. Elsevier. Arnoldsville, Georgia. United States of America.
- Briggs, J. C. y Bowen, B. W. 2012. A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography. 39(1), 12-30.
- Butchart, S. 2010. Global biodiversity: indicators of recent declines. Science 328: 1164-1168.
- Castellanos-Galindo, G. A., Krumme, U., Rubio, E. A. y Saint-Paul, U. 2013. Spatial variability of mangrove fish assemblage composition in the tropical eastern Pacific Ocean. Reviews in Fish Biology and Fisheries, 23, 69-86.
- Chen, L., Zhang, R. H. y Gao, C. 2022. Effects of temperature and salinity on surface currents in the equatorial pacific. Journal of Geophysical Research: Oceans, 127(4), e2021JC018175.
- Cloern, J. E., Jassby, A. D., Schraga, T. S., Nejad, E. y Martin, C. 2017. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay. Limnology and Oceanography, 62(1), 272-291.
- Craig, P. C. 1989. Subsistence fisheries at coastal villages in the Alaskan Arctic, 1970-1986. Biological Papers of the University of Alaska, 24, 131-152.

- Dexter, E., Rollwagen-Bollens, G. y Bollens, S. M. 2018. The trouble with stress: A flexible method for the evaluation of nonmetric multidimensional scaling. Limnology and Oceanography: Methods, 16(7), 434-443.
- Dossa, A. N., Alory, G., Da Silva, A. C., Dahunsi, A. M. y Bertrand, A. 2021. Global analysis of coastal gradients of sea surface salinity. Remote Sensing, 13(13), 2507.
- Duteil, O., Oschlies, A. y Böning, C. W. 2018. Pacific Decadal Oscillation and recent oxygen decline in the eastern tropical Pacific Ocean. Biogeosciences, 15(23), 7111-7126.
- Ekman, S. 1953. Zoogeography of the Sea. Sidgwick and Jackson. London. United Kingdom.
- Ennen, J., Agha, M, Sweat, S., Matamoros, W., Lovich, J., Rodhin, A., Iberson, J., Hoagstrom, C. 2019. Turtle biogeography: Global regionalization and conservation priorities. Biological Conservation. 41:1-11.
- FEOW (Freshwater Ecoregions of the World). 2025. Available at https://www.feow.org/.
- Fredriksen, H. B., Berner, J., Subramanian, A. C. y Capotondi, A. 2020. How does El Niño— Southern Oscillation change under global warming. A first look at CMIP6. Geophysical Research Letters, 47(22), e2020GL090640.
- Frick, Eschmeyer. y van der Lann, 2017. Catálogo de peces. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.
 Consultado en diciembre de 2024).
- Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L. y Lange, C. 2009. Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 56(16), 992-1003.
- Garreaud, R. D., Vuille, M., Compagnucci, R. y Marengo, J. 2009. Present-day south american climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(3-4), 180-195.
- Gomes, A. C., Bernardo, N., Carmo, A. C., Rodrigues, T. y Alcântara, E. 2018. Diffuse attenuation coefficient retrieval in CDOM dominated inland water with high chlorophyll-a concentrations. Remote Sensing, 10(7), 1063.
- Harrison, T. D. y Whitfield, A. K. 2022. Global biogeography of estuary-associated fishes. Journal of the Marine Biological Association of the United Kingdom, 102(1:2), 113-131.

- Henriques, S., Cardoso, P., Cardoso, I., Laborde, M., Cabral, H. N. y Vasconcelos, R. P. 2017a. Processes underpinning fish species composition patterns in estuarine ecosystems worldwide. Journal of Biogeography. 44, 627–639.
- Henriques, S., Guilhaumon, F., Villéger, S., Amoroso, S., França, S., Pasquaud, S., Cabral, H. N. y Vasconcelos, R. P. 2017b. Biogeographical region and envir onmental conditions drive functional traits of estuarine fish assemblages worldwide. Fish and Fisheries 18, 752–771.
- Hutchings, A. M., de Vries, C. S., Hayes, N. R. y Orr, H. G. 2024. Temperature and dissolved oxygen trends in English estuaries over the past 30 years. Estuarine, Coastal and Shelf Science, 306, 108892.
- Jury, M. R. 2024. Regional Controls on Climate and Weather Variability on the Southwest Coast of Peru. Coasts, 4(1). 49-62.
- Jury, M. R. y Alfaro-Garcia, L. E. 2024. Peruvian North Coast Climate Variability and Regional Ocean–Atmosphere Forcing. *Coasts*, 4(3). 508-534.
- Martínez-Guevara, A. 2008. Análisis de la ictiodiversidad y patrones biogeográficos en los sistemas costeros de Baja California Sur, México. Doctoral dissertation, Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas.
- McGregor, G. R. y Ebi, K. 2018. El Niño Southern Oscillation (ENSO) and health: an overview for climate and health researchers. Atmosphere, 9(7), 282.
- Miloslavich, P., Klein, E., Díaz, J. M., Hernández, C. E., Bigatti, G., Campos, L. y Martín,
 A. 2011. Marine biodiversity in the Atlantic and Pacific coasts of South America:
 knowledge and gaps. PloS one, 6(1), e14631.
- López-Herrera, D. L., de la Cruz-Agüero, G., Aguilar-Medrano, R., Navia, A. F., Peterson, M. S., Franco-López, J. y Cruz-Escalona, V. H. 2021. Ichthyofauna as a Regionalization Instrument of the Coastal Lagoons of the Gulf of Mexico. Estuaries and Coasts, 44(7), 2010-2025.
- Li, X., Lu, C., Zhang, Y., Zhao, H., Wang, J., Liu, H. y Yin, K. 2020. Low dissolved oxygen in the Pearl River estuary in summer: Long-term spatio-temporal patterns, trends, and regulating factors. Marine pollution bulletin, 151, 110814.
- Linford, P., Pérez-Santos, I., Montes, I., Dewitte, B., Buchan, S., Narváez, D. y Altamirano, R. 2023. Recent deoxygenation of Patagonian fjord subsurface waters connected to the

- Peru–Chile undercurrent and equatorial subsurface water variability. Global biogeochemical cycles, 37(6). e2022GB007688.
- Lynn, R. J. y Simpson, J. J. 1987. The California Current System: The seasonal variability of its physical characteristics. Journal of Geophysical Research: Oceans, 92(12), 12947-12966.
- Old, P., Hautala, S. L. y Thompson, L. 2019. Differences in eastern North Pacific stratification and their potential impact on the depth of winter mixing in CMIP5 models. Geophysical Research Letters, 46(21), 12136-12145.
- Parra, R. T., Usta, D. F., Díaz, L. J. y Moreno-Ardila, M. P. 2024. Eastern Tropical Pacific atmospheric and oceanic projected changes based on CMIP6 models. Progress in Oceanography, 229, 103362.
- Patterson, C. 1983. Aims and methods in biogeography. Systematics Association. 23: 1-28.
- Pearce, M. W. y Schumann, E. H. 2003. Dissolved oxygen characteristics of the Gamtoos estuary, South Africa. African Journal of Marine Science, 25, 99-109.
- Pérez-Santos, I., Seguel, R., Schneider, W., Linford, P., Donoso, D., Navarro, E. y Daneri,
 G. 2019. Synoptic-scale variability of surface winds and ocean response to atmospheric forcing in the eastern austral Pacific Ocean. Ocean Science, 15(5). 1247-1266.
- Portela, E., Beier, E., Barton, E. D. y Sánchez-Velasco, L. 2018. Surface salinity balance in the tropical Pacific off Mexico. Journal of Geophysical Research: Oceans, 123(8), 5763-5776.
- Prum, P., Harris, L. y Gardner, J. 2024. Widespread warming of Earth's estuaries. Limnology and Oceanography Letters, 9(3), 268-275.
- Reid, J. L., Roden, G. I, y Wyllie, J. G. 1958. Studies of the California Current system. California Cooperative Oceanic Fisheries Investigations Report, 6:27-56.
- Rohlf, F. 1997. NTSYS-pc, Version 2.02. Applied Biostatistics Inc, Exeter Software.
- Romero-Berny, E. I., Velázquez-Velázquez, E., Anzueto-Calvo, M. J., Urbina-Trejo, E. y Schmitter-Soto, J. J. 2018. The fish fauna of three lagoon-estuarine systems in the northeastern Gulf of Tehuantepec, Mexican south Pacific. Revista mexicana de biodiversidad, 89(1), 87-100.
- Roch, M., Brandt, P. y Schmidtko, S. 2023. Recent large-scale mixed layer and vertical stratification maxima changes. Frontiers in Marine Science, 10, 1277316.

- Sathicq, M. B., Bauer, D. E. y Gómez, N. 2015. Influence of El Niño Southern Oscillation phenomenon on coastal phytoplankton in a mixohaline ecosystem on the southeastern of South America: Río de la Plata estuary. Marine Pollution Bulletin, 98(1:2), 26-33.
- Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M. A. y Robertson, J. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience, 57(7), 573-583.
- Silva, N. y Vargas, C. A. 2014. Hypoxia in Chilean patagonian fjords. *Progress in Oceanography*, 129, 62-74.
- Silva, N., Rojas, N. y Fedele, A. 2009. Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile. *Deep Sea Research Part II: Topical Studies in Oceanography*, 56(16), 1004-1020.
- Vega, C., Hernández-Guerrero, C. J. y Cruz-Barraza, J. A. 2012. Biogeografía de esponjas marinas (Phylum Porifera); estudios en el Pacífico Oriental. CICIMAR Oceánides, 27(1), 35-50
- Vasconcelos, R. P., Henriques, S., Franca, S., Pasquaud, S., Cardoso, I., Laborde, M. y Cabral, H. N. 2015. Global patterns and predictors of fish species richness in estuaries. Journal of Animal Ecology 84, 1331-1341.
- Vasconcelos, R. P., Batista, M. I. y Henriques, S. 2017. Current limitations of global conservation to protect higher vulnerability and lower resilience fish species. Scientific Reports 7, 7702.
- Velázquez-Pérez, C., Romero-Berny, E. I., Miceli-Méndez, C. L., Moreno-Casasola, P. y López, S. 2024. Geoforms and Biogeography Defining Mangrove Primary Productivity: A Meta-Analysis for the American Pacific. Forests, 15(7), 1215.
- Whittaker, R., Araujo, M., Jepson, P., Ladle, R. J., Watson, J. y Willis, K. 2005. 678 Conservation biogeography: assessment and prospect. Diversity and Distribution 11: 3-23.
- Whitfield, A. K. 2021. Estuaries how challenging are these constantly changing aquatic environments for associated fish species? Environmental Biology of Fishes, 104(4), 517-528.
- White, D. y Gramacy, R. 2015. Mapping, pruning, and graphing tree models. R package version 1.4-7. https://cran.r-project.org/web/packages/maptree/index.html.

- Wyrtki, K. 1965. Surface currents of the Eastern Tropical Pacific Ocean. Bulletin Interamerican Tropical Tuna Comision, 9(5): 269-304.
- Zhu, C., Van Maren, D. S., Guo, L., Lin, J., He, Q. y Wang, Z. B. 2021. Effects of sediment-induced density gradients on the estuarine turbidity maximum in the Yangtze Estuary. Journal of Geophysical Research: Oceans, 126(5), e2020JC016927.
- Zunino, M. y Zullini, A. 2016. Biogeografía: La dimensión espacial de la evolución.
 México. Fondo de Cultura Económica. Pp. 359.

CONCLUSIONES GENERALES

- En este estudio se revisó la información ictiológica de 104 localidades estuarinas a lo largo del Pacífico Oriental, en donde se recopiló un listado taxonómico el cual está integrado por un total de 970 especies válidas, agrupadas dentro de 5 clases, 51 órdenes, 46 subórdenes, 193 familias, 103 subfamilias y 509 géneros.
- Oriental, los cuales estos compuestos de la siguiente manera: grupo I (Pacífico Ártico-Polar Oriental) representado por 50 especies, dentro de 37 géneros, 17 familias y ocho órdenes; grupo II (Pacífico Frio-Cálido Nororiental) presenta 265 especies agrupados en 38 órdenes, 90 familias y 174 géneros; grupo III (Pacífico Tropical Oriental) está compuesto por 683 especies dentro de 346 géneros, 130 familias y 39 órdenes y el grupo IV (Pacífico Frio-Cálido Sudoriental) el cual está compuesto por 74 especies agrupado por 60 géneros, 49 familias y 21 órdenes.
- Las especies más representativas para los grupos I y II fueron Clupea pallasii, Oncorhynchus keta, Oncorhynchus kisutch, Leptocottus armatus y Platichthys stellatus; mientras en las localidades estuarinas tropicales fueron Strongylura exilis, Pseudupeneus grandisquamis, Polydactylus approximans y por último Odontesthes regia y Sebastes oculatus representando a los estuarios del Pacífico Frio-Cálido Sudoriental.
- La clasificación biogeográfica en este estudio presento un nivel de exactitud del 93.20% con base a la distribución de los peces estuarinos, mientras que la clasificación a nivel de provincia de Spalding *et al.* (2007), presento un 87. 37% de exactitud, lo cual refleja que ambas regionalizaciones presentan un alto nivel de concordancia biogeográfica.
- En nuestros resultados se detectó una marcada correspondencia latitudinal en cada una de las variables ambientales seleccionadas que inciden en cada uno de los grupos biogeográficos identificados.

REFERENCIAS GENERALES

- Baum, M. P., Kennedy, D. M. y McSweeney, S. L. 2024. Large structural estuaries: their global distribution and morphology. Geomorphology, 461, 109309.
- Briggs, J. C. 1974. Marine zoogeography. McGraw Hill. New York. United States of America.
- Briggs, J. C. 1995. Global biogeography, developments in paleontology and stratigraphy. Elsevier. Arnoldsville, Georgia. United States of America.
- Briggs, J. C. y Bowen, B. W. 2012. A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography. 39(1): 12-30.
- Carrasco Navas-Parejo, J. C., Papaspyrou, S., Matamoros, W. A., Caviedes, V. y Corzo, A.
 2024. Fish metacommunity structure in estuarine systems of the Honduran coast of the
 Mesoamerican barrier reef region. Ecological Indicators, 160, 111765.
- Connor, L., Ryan, D., Feeney, R., Roche, W. K., Shephard, S. y Kelly, F. L. 2019.
 Biogeography and fish community structure in Irish estuaries. Regional Studies in Marine Science, 32, 100836.
- Dana, J. D. 1853. On an isothermal oceanic chart illustrating the geographical distribution of marine animals. Am. J Sci. 16: 314-327.
- Darwin, C. 1859. The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London.
- Day, J. W., Hall, C. H., Kemp, W. M. y Yañez-Arancibia, A. 1989. Estuarine ecology. John Wiley and Sons Press, New York.
- Dyer, K. R. 1973. Estuaries: a physical introduction.
- Edgar, G. J., Barrett, N. S. y Last, P. R. 1999. The distribution of macroinvertebrates and fishes in Tasmanian estuaries. Journal of Biogeography, 26(6). 1169-1189.
- Edgar, G. J., Barrett, N. S., Graddon, D. J. y Last, P. R. 2000. The conservation significance of estuaries: a classification of Tasmanian estuaries using ecological, physical and demographic attributes as a case study. Biological Conservation. 92(3), 383-397.
- Elliott, M., Whitfield, A. K., Potter, I. C., Blaber, S. J., Cyrus, D. P., Nordlie, F. G. y Harrison, T. D. 2007. The guild approach to categorizing estuarine fish assemblages: a global review. Fish and fisheries, 8(3), 241-268.

- Escalante, T., Szumik, C., Morrone, J. 2009. Areas of endemism of Mexican mammals: Reanalysis applying the optimality criterion. Biological Journal of the Linnean Society 98: 468-478.
- Ekman, S. 1953. Zoogeography of the Sea. Sidgwick and Jackson. London. United Kingdom.
- Facca, C. 2020. Ecological status assessment of transitional waters. Water, 12(11), 3159.
- Francis, M. P., Morrison, M. A., Leathwick, J. y Walsh, C. 2011. Predicting patterns of richness, occurrence and abundance of small fish in New Zealand estuaries. Marine and Freshwater Research, 62(11). 1327-1341.
- Forbes, E. 1856. Map of the distribution of marine life. In: Johnston AK (ed) The physical atlas of natural phenomena, plate 31. Johnston W, Johnston AK, Edinburgh.
- Harrison, T. D. 2002. Preliminary assessment of the biogeography of fishes in South African estuaries. Marine and Freshwater Research, 53(2), 479-490.
- Harrison, T. D. y Whitfield, A. K. 2022. Global biogeography of estuary-associated fishes. Journal of the Marine Biological Association of the United Kingdom, 102(1:2), 113-131.
- Hayes, M.O, 1975. Morphology of sand accumulation in estuaries. In: Cronin, L.E. (Ed.), Estuarine Research. Academic Press, New York, NY, Vol. 2, Pp. 3–22.
- Henriques, S., Cardoso, P., Cardoso, I., Laborde, M., Cabral, H. N. y Vasconcelos, R. P. 2017a. Processes underpinning fish species composition patterns in estuarine ecosystems worldwide. Journal of Biogeography. 44, 627–639.
- Henriques, S., Guilhaumon, F., Villéger, S., Amoroso, S., França, S., Pasquaud, S., Cabral, H. N. y Vasconcelos, R. P. 2017b. Biogeographical region and envir onmental conditions drive functional traits of estuarine fish assemblages worldwide. Fish and Fisheries 18, 752–771.
- Horn, M. H, y Allen, L. G. 1976. Numbers of species and faunal resemblance of marine fishes in California bays and estuaries. Bulletin of the Southern California Academy of Sciences 75, 159-170.
- Horn, M. H., Allen, L. G. y Lea, R. N. 2006. Biogeography. In Allen LG, Pondella DJ and Horn MH (eds), The Ecology of Marine Fishes: California and Adjacent Waters. Berkeley, CA. University of California Press, Pp. 3-25.

- Hume, T. M., Snelder, T., Weatherhead, M. y Liefting, R. 2007. A controlling factor approach to estuary classification. Ocean y coastal management. 50(11:12). 905-929.
- Ketchum, B. H. 1983. Estuaries and enclosed seas.
- Kume, M., Lavergne, E., Ahn, H., Terashima, Y., Kadowaki, K., Ye, F. y Kasai, A. 2021. Factors structuring estuarine and coastal fish communities across Japan using environmental DNA metabarcoding. Ecological Indicators, 121. 107216.
- López-Herrera, D. L., de la Cruz-Agüero, G., Aguilar-Medrano, R., Navia, A. F., Peterson, M. S., Franco-López, J. y Cruz-Escalona, V. H. 2021. Ichthyofauna as a Regionalization Instrument of the Coastal Lagoons of the Gulf of Mexico. Estuaries and Coasts, 44(7). 2010-2025.
- Mateus, M., Mateus, S. y Baretta, J. W. 2008. Basic concepts of estuarine ecology. Perspect. Integr. Coast. Zone Manag. South Am, 10(2:1), 4497-0562.
- Morrone, J. J. 2009. Evolutionary Biogeography. Columbia University Press, Nueva York.
 Pp. 301.
- Morrone, J. 2011. La teoría biogeográfica de Florentino Ameghino y el carácter episódico de la evolución geobiótica de los mamíferos terrestres de América del Sur. Asociación Paleontológica Argentina 12: 81-89.
- Morrone, J. y Escalante. T. 2016. Introducción a la biogeografía. México. UNAM. 315.
- Nordlie, F. G. 2003. Fish communities of estuarine salt marshes of eastern North America, and comparisons with temperate estuaries of other coun tries. Reviews in Fish Biology and Fisheries 13, 281-325.
- Palacios-Mejía, J. 2006. Aspectos genéticos en el estudio de la biodiversidad colombiana.
 En: Díaz, J. M. y Garzón-Ferreira, J. (Eds.). C. Ecorregiones naturales y ecosistemas marino-costeros. Bogotá. Colombia. Pp. 85-106.
- Perillo, G. M. 1995. Definitions and geomorphologic classifications of estuaries. In Developments in sedimentology. Vol. 53, Pp. 17-47. Elsevier.
- Piccolo, M. C. y Perillo, G. M. 1997. Geomorfología e hidrografía de los estuarios.
- Pritchard, D. W. 1952. Estuarine hydrography. In Advances in geophysics. Elsevier. Vol. 1, Pp. 243-280.

- Pritchard, D.W. 1967. Observations of circulation in coastal plain estuaries. In: Lauff, G.H. (Ed.), Estuaries. American Association for the Advancement of Science, vol. 83, Washington, DC, Pp.37–44.
- Rusnak, G. A. 1967. Rates of sediment accumulation in modern estuaries. In: Lauff, G.H. (Ed.), Estuaries. American Association for the Advancement of Science, Washington, DC, vol. 83, Pp.180.
- Roy, P. S., Williams, R. J., Jones, A. R., Yassini, I., Gibbs, P. J., Coates, B. y Nichol, S. 2001. Structure and function of south-east Australian estuaries. Estuarine, coastal and shelf science. 53(3), 351-384.
- Sanmartín, I. y Ronquiste, F. 2002. New solutions to old problems: Widespread taxa, redundant distributions and missing areas in event-based biogeography. Annuals of Biodiversity Conservation 25: 75-93.
- Sheaves, M. y Johnston, R. 2009. Ecological drivers of spatial variability among fish fauna of 21 tropical Australian estuaries. Marine Ecology Progress Series 385, 245-260.
- Snedden, G. A., Cable, J. E. y Kjerfve, B. 2013. Estuarine geomorphology and coastal hydrology. Estuarine ecology, 19-38.
- Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M. A. y Robertson, J. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience, 57(7), 573-583.
- Vasconcelos, R. P., Henriques, S., Franca, S., Pasquaud, S., Cardoso, I., Laborde, M. y Cabral, H. N. 2015. Global patterns and predictors of fish species richness in estuaries. Journal of Animal Ecology 84, 1331-1341.
- Vasconcelos, R. P., Batista, M. I. y Henriques, S. 2017. Current limitations of global conservation to protect higher vulnerability and lower resilience fish species. Scientific Reports 7, 7702.
- Veron, J. E., Devantier, L. M., Turak, E., Green, A. L., Kininmonth, S., Stafford-Smith, M. y Peterson, N. 2009. Delineando el triángulo coralino. Galaxea, Revista de Estudios de Arrecifes de Coral, 11 (2), 91-100.
- Vilar, C. C., Joyeux. J. C., Giarrizzo, T., Spach. H. L., Vieira, J. P. y Vaske-Junior, T. 2013. Local and regional ecological drivers of fish assemblages in Brazilian estuaries. Marine Ecology Progress Series 485, 181-197.

- Vilar, C. C., Joyeux, J. C. y Spach, H. L. 2017. Geographic variation in species richness, rarity, and the selection of areas for conservation: an integrative approach with Brazilian estuarine fishes. Estuarine, Coastal and Shelf Science 196, 134-140.
- Ward, T., Butler, E. y Hill, B. 1998. Environmental indicators for national State of the Environment reporting: estuaries and the sea.
- Whitfield, A. K. 1992. A characterization of southern African estuarine systems. Southern African Journal of Aquatic Science, 18(1:2), 89-103.
- Whitfield, A. K. 2005. Preliminary documentation and assessment of fish diversity in sub-Saharan African estuaries. African Journal of Marine Science, 27(1). 307-324.
- Whitfield, A. K. y Elliott, M. 2011. Ecosystem and biotic classifications of estuaries and coasts. Chapter 1. 8. In 'Treatise on Estuaries and Coasts'. (Eds). E. Wolanski, and DS McLusky. Pp. 99-122.
- Zunino, M. y Zullini, A. 2016. Biogeografía: La dimensión espacial de la evolución.
 México. Fondo de Cultura Económica. Pp. 359.

ANEXOS

Tabla 2. Clasificación de especies que se encuentran dentro de una categoría de riesgo según la IUCN.

		Categoría d	le riesgo según la IUCN	-
N.º	Orden	Familia	Especie	IUCN
1	Albuliformes	Albulidae	Albula esuncula	(2008) Preocupación menor
2	Anguilliformes	Muraenidae	Anarchias galapagensis	(2010) Preocupación menor
3	Anguilliformes	Muraenidae	Echidna nebulosa	(2019) Preocupación menor
4	Anguilliformes	Muraenidae	Enchelycore octaviana	(2010) Preocupación menor
5	Anguilliformes	Muraenidae	Gymnothorax castaneus	(2010) Preocupación menor
6	Anguilliformes	Ophichthidae	Pseudomyrophis micropinna	(2010) Preocupación menor
7	Anguilliformes	Ophichthidae	Ophichthus longipenis	(2010) Preocupación menor
8	Anguilliformes	Congridae	Ariosoma gilberti	(2010) Preocupación menor
9	Clupeiformes	Pristigasteridae	Opisthopterus equatorialis	(2020) Preocupación menor
10	Clupeiformes	Dorosomatidae	Lile gracilis	(2010) Preocupación menor
11	Clupeiformes	Pristigasteridae	Odontognathus panamensis	(2020) Preocupación menor
12	Gobiiformes	Oxudercidae	Evermannia zosterura	(2010) Preocupación menor
13	Gobiiformes	Gobiidae	Chriolepis zebra	(2010) Preocupación menor
14	Gobiiformes	Gobiidae	Coryphopterus urospilus	(2010) Preocupación menor
15	Gobiiformes	Gobiidae	Gobiosoma seminudum	(2010) Preocupación menor
16	Syngnathiformes	Callionymidae	Synchiropus atrilabiatus	(2010) Preocupación menor
17	Carangiformes	Centropomidae	Centropomus viridis	(2020) Preocupación menor
18	Carangiformes	Sphyraenidae	Sphyraena idiastes	(2020) Preocupación menor
19	Carangiformes	Sphyraenidae	Sphyraena lucasana	(2010) Preocupación menor
20	Carangiformes	Cyclopsettidae	Etropus crossotus	(2015) Preocupación menor
21	Carangiformes	Cyclopsettidae	Syacium latifrons	(2021) Preocupación menor
22	Carangiformes	Bothidae	Bothus leopardinus	(2020) Preocupación menor
23	Carangiformes	Achiridae	Trinectes fimbriatus	(2022) Preocupación menor
24	Carangiformes	Achiridae	Trinectes fluviatilis	(2022) Preocupación menor
25	Carangiformes	Cynoglossidae	Symphurus leei	(2021) Preocupación menor
26	Carangiformes	Cynoglossidae	Symphurus melanurus	(2021) Preocupación menor
27	Carangiformes	Carangidae	Caranx caninus	(2010) Preocupación menor
28	Carangiformes	Coryphaenidae	Coryphaena hippurus	(2010) Preocupación menor
29	Cichliformes	Cichlidae	Astatheros macracanthus	(2019) Preocupación menor
30	Mugiliformes	Mugilidae	Mugil thoburni	(2010) Preocupación menor
31	Blenniiformes	Tripterygiidae	Enneanectes carminalis	(2010) Preocupación menor
32	Blenniiformes	Dactyloscopidae	Dactyloscopus amnis	(2019) Preocupación menor
33	Perciformes	Triglidae	Bellator xenisma	(2010) Preocupación menor
34	Perciformes	Triglidae	Prionotus horrens	(2010) Preocupación menor
35	Perciformes	Scorpaenidae	Scorpaenodes xyris	(2010) Preocupación menor
36	Acanthuriformes	Gerreidae	Eucinostomus currani	(2015) Preocupación menor
37	Myliobatiformes	Myliobatidae	Myliobatis californica	(2015) Preocupación menor
38	Acanthuriformes	Gerreidae	Eucinostomus gracilis	(2010) Preocupación menor
39	Acanthuriformes	Gerreidae	Eugerres axillaris	(2017) Preocupación menor
40	Acanthuriformes	Gerreidae	Eugerres brevimanus	(2010) Preocupación menor
41	Acanthuriformes	Gerreidae	Eugerres lineatus	(2010) Preocupación menor
42	Acanthuriformes	Sciaenidae	Micropogonias altipinnis	(2020) Preocupación menor
43	Acanthuriformes	Haemulidae	Haemulopsis leuciscus	(2010) Preocupación menor
44	Acanthuriformes	Haemulidae	Rhencus macracanthus	(2010) Preocupación menor
45	Acanthuriformes	Haemulidae	Rhonciscus bayanus	(2020) Preocupación menor
46	Acanthuriformes	Haemulidae	Rhonciscus branickii	(2010) Preocupación menor

47	Acanthuriformes	Lobotidae	Lobotes pacifica	(2010) Preocupación menor
48	Acanthuriformes	Lutjanidae	Lutjanus argentiventris	(2010) Preocupación menor
49	Acanthuriformes	Lutjanidae	Lutjanus colorado	(2010) Preocupación menor
50	Acanthuriformes	Lutjanidae	Lutjanus novemfasciatus	(2010) Preocupación menor
51	Acanthuriformes	Chaetodontidae	Chaetodon humeralis	(2009) Preocupación menor
52	Tetraodontiformes	Diodontidae	Diodon holocanthus	(2015) Preocupación menor
53	Tetraodontiformes	Tetraodontidae	Arothron meleagris	(2014) Preocupación menor
54	Tetraodontiformes	Tetraodontidae	Sphoeroides angusticeps	(2023) Preocupación menor
55	Tetraodontiformes	Tetraodontidae	Sphoeroides annulatus	(2010) Preocupación menor
56	Tetraodontiformes	Tetraodontidae	Sphoeroides sechurae	(2010) Preocupación menor
57	Tetraodontiformes	Balistidae	Pseudobalistes naufragium	(2010) Preocupación menor
58	Myliobatiformes	Gymnuridae	Gymnura marmorata	(2020) Casi amenazada
59	Myliobatiformes	Rhinopteridae	Rhinoptera steindachneri	(2019) Casi amenazada
60	Anguilliformes	Ophichthidae	Pisodonophis daspilotus	(2010) Casi amenazada
61	Torpediniformes	Narcinidae	Narcine entemedor	(2020) Vulnerable
62	Myliobatiformes	Mobulidae	Mobula munkiana	(2018) Vulnerable
63	Blenniiformes	Pomacentridae	Stegastes leucorus	(2010) Vulnerable
64	Myliobatiformes	Urotrygonidae	Urotrygon asterias	(2024)
65	<u> </u>	Elopidae	Elops affinis	(2019)
66		Gobiidae	Bollmannia macropoma	(2010)
67	Gobiiformes	Gobiidae	Bollmannia ocellata	(2010)
68		Gobiidae	Bollmannia stigmatura	(2010)
69	Gobiiformes	Gobiidae	Bollmannia umbrosa	(2010)
70	Gobiiformes	Gobiidae	Chriolepis minutilla	(2010)
71	Gobiiformes	Gobiidae	Chriolepis semisquamata	(2010)
72		Gobiidae	Rhinogobiops nicholsii	(2024)
73	Gobiiformes	Gobiidae	Cerdale ionthas	(2010)
74	Gobiiformes	Gobiidae	Cerdale paludicola	(2010)
75		Gobiidae	Microdesmus dipus	(2010)
76		Gobiidae	Microdesmus suttkusi	(2010)
77	Carangiformes	Cyclopsettidae	Syacium maculiferum	(2021)
78	Carangiformes	Carangidae	Trachurus murphyi	(2010)

Tabla 3. Especies endémicas recolectadas en las localidades estuarinas a lo largo del Pacífico Oriental.

	Especies endémicas					
N.º	Orden	Familia	Especie	Localidades		
1	Rajiformes	Rajidae	Caliraja cortezensis	Grupo III: ID: 47		
2	Myliobatiformes	Urotrygonidae	Urotrygon peruanus	Grupo III: ID: 96		
3	Clupeiformes	Dorosomatidae	Dorosoma smithi	Grupo III: ID: 54 y 55		
4	Gobiiformes	Gobiidae	Chriolepis minutilla	Grupo III: ID: 46		
5	Syngnathiformes	Syngnathidae	Syngnathus carinatus	Grupo III: ID: 53		
6	Blenniiformes	Labrisomidae	Paraclinus magdalenae	Grupo III: ID: 45		
7	Blenniiformes	Labrisomidae	Paraclinus walkeri	Grupo II: ID: 42		
8	Blenniiformes	Labrisomidae	Starksia cremnobates	Grupo III: ID: 46		
9	Perciformes	Serranidae	Paralabrax auroguttatus	Grupo III: ID : 44, 45, y 46		
10	Acanthuriformes	Haemulidae	Pomadasys empherus	Grupo III: ID : 73 y 90		
11	Siluriformes	Trichomycteridae	Trichomycterus punctulatus	Grupo III: ID: 97		

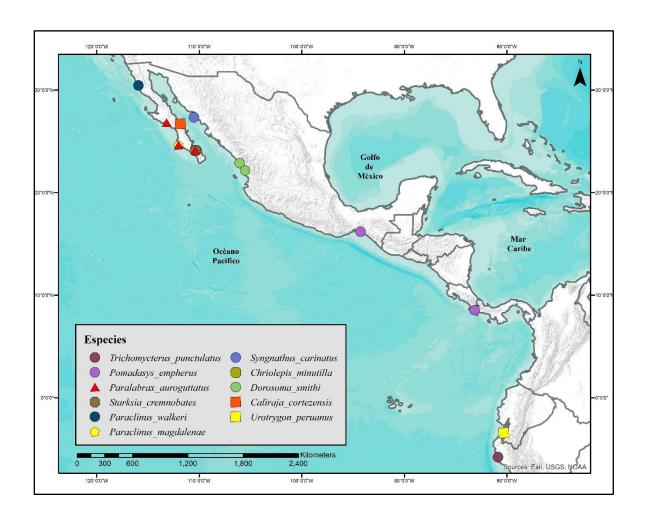


Figura 26. Distribución geográfica de especies endémicas estuarinas del Pacífico Oriental.

Tabla 4. Especies endémicas del Pacífico Oriental con alguna categoría de riesgo según la IUCN.

Especies endémicas con una categoría de riesgo según la IUCN					
N.º	Orden	Familia	Especie	Localidades	
1	Gobiiformes	Gobiidae	Chriolepis minutilla	Grupo III: ID: 46	

Tabla 5. Lista de especies y numero de apéndice bajo la clasificación de CITES

	CITES Appendice						
N.º	Orden	Familia	Especies	Localidades	Appendice		
1	Acipenseriformes	Acipenseridae	Acipenser medirostris	Grupo II: ID : 17, 18, 21, 24, 26, 27, 28 y 32	II		
2	Rhinopristiformes	Rhinobatidae	Pseudobatos glaucostigma	Grupo III: ID : 45, 46, 47, 54, 58, 73, 74 y 93	II		
3	Rhinopristiformes	Rhinobatidae	Pseudobatos leucorhynchus	Grupo III: ID : 43, 73, 74 y 85	II		
4	Rhinopristiformes	Rhinobatidae	Pseudobatos planiceps	Grupo III: ID : 92, 93 y 96	II		

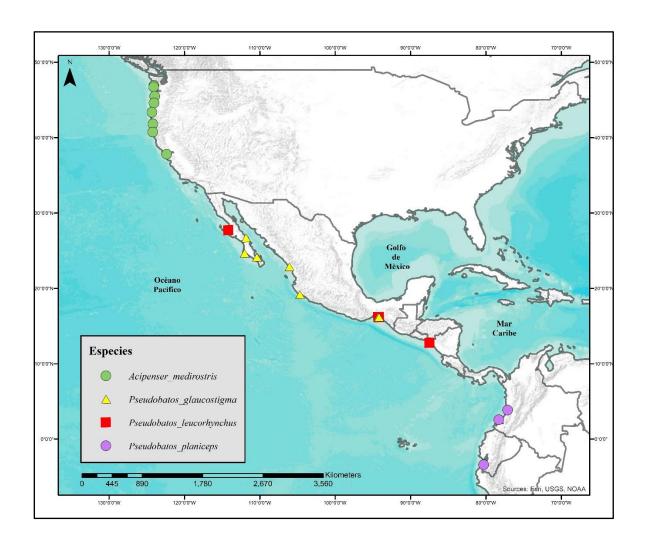


Figura 27. Distribución geográfica de las especies dentro de los Appendices CITES del Pacífico Oriental.

Tabla 6. Especies dulceacuícolas-salobres dentro de las localidades estuarinas del Pacífico Oriental.

N.º	Orden	Familia	Especies	Autor y Año
1	Atheriniformes	Atherinopsidae	Atherinella crystallina	Jordan y Culver 1895
2	Blenniiformes	Embiotocidae	Hysterocarpus traskii	Gibbons 1854
3	Clupeiformes	Dorosomatidae	Dorosoma smithi	Hubbs y Miller 1941
4	Cypriniformes	Leuciscidae	Mylocheilus caurinus	Richardson 1836
5	Cypriniformes	Leuciscidae	Pogonichthys macrolepidotus	Ayres 1854
6	Cypriniformes	Leuciscidae	Orthodon microlepidotus	Ayres 1854
7	Cyprinodontiformes	Anablepidae	Oxyzygonectes dovii	Günther 1866
8	Cyprinodontiformes	Poeciliidae	Poecilia butleri	Jordan 1889
9	Cyprinodontiformes	Poeciliidae	Poecilia nelsoni	Meek 1904
10	Cyprinodontiformes	Poeciliidae	Poecilia sphenops	Valenciennes 1846

11	Cyprinodontiformes	Poeciliidae	Poeciliopsis fasciata	Meek 1904
12	Gadiformes	Lotidae	Lota lota	Linnaeus 1758
13	Gobiiformes	Eleotridae	Guavina micropus	Ginsburg 1953
14	Gobiiformes	Eleotridae	Hemieleotris latifasciata	Meek y Hildebrand 1912
15	Gobiiformes	Oxudercidae	Gobioides peruanus	Steindachner 1880
16	Lepisosteiformes	Lepisosteidae	Atractosteus tropicus	Gill 1863
17	Osmeriformes	Osmeridae	Hypomesus transpacificus	McAllister 1963
18	Perciformes	Cottidae	Cottus aleuticus	Gilbert 1896
19	Perciformes	Cottidae	Cottus philonips	Eigenmann y Eigenmann 1892
20	Salmoniformes	Esocidae	Esox lucius	Linnaeus 1758
21	Siluriformes	Ariidae	Cathorops steindachneri	Gilbert y Starks 1904
22	Siluriformes	Ariidae	Sciades dowii	Gill 1863
23	Syngnathiformes	Syngnathidae	Pseudophallus starksii	Jordan y Culver 1895

Tabla 7. Especies dulceacuícolas dentro de las localidades estuarinas del Pacífico Oriental.

N.º	Orden	Familia	Especies	Autor y Año
1	Atheriniformes	Atherinopsidae	Menidia audens	Hay 1882
2	Atheriniformes	Atherinopsidae	Basilichthys australis	Eigenmann 1928
3	Blenniiformes	Gobiesocidae	Gobiesox juradoensis	Fowler 1944
4	Centrarchiformes	Centrarchidae	Micropterus salmoides	Lacepède 1802
5	Centrarchiformes	Centrarchidae	Lepomis macrochirus	Rafinesque 1819
6	Centrarchiformes	Centrarchidae	Pomoxis nigromaculatus	Lesueur 1829
7	Centrarchiformes	Centrarchidae	Micropterus dolomieu	Lacepède 1802
8	Centrarchiformes	Centrarchidae	Pomoxis annularis	Rafinesque 1818
9	Centrarchiformes	Centrarchidae	Lepomis cyanellus	Rafinesque 1819
10	Characiformes	Acestrorhamphidae	Astyanax aeneus	Günther 1860
11	Characiformes	Acestrorhamphidae	Astyanax panamensis	Günther 1864
12	Characiformes	Acestrorhamphidae	Rhoadsia altipinna	Fowler 1911
13	Characiformes	Bryconidae	Brycon atrocaudatus	Kner 1863
14	Characiformes	Bryconidae	Brycon dentex	Günther 1860
15	Characiformes	Bryconidae	Chilobrycon deuterodon	Géry y de Rham 1981
16	Characiformes	Characidae	Roeboides bouchellei	Fowler 1923
17	Characiformes	Curimatidae	Pseudocurimata troschelii	Günther 1860
18	Characiformes	Curimatidae	Pseudocurimata peruana	Eigenmann 1922
19	Characiformes	Lebiasinidae	Lebiasina bimaculata	Valenciennes 1847.
20	Characiformes	Parodontidae	Saccodon wagneri	Kner 1863
21	Characiformes	Stevardiidae	Eretmobrycon festae	Boulenger 1898
22	Characiformes	Stevardiidae	Eretmobrycon brevirostris	Günther 1860

23	Characiformes	Stevardiidae	Eretmobrycon peruanus	Müller y Troschel 1845
24	Cichliformes	Cichlidae	Amphilophus trimaculatus	Günther 1867
25	Cichliformes	Cichlidae	Astatheros macracanthus	Günther 1864
26	Cichliformes	Cichlidae	Andinoacara rivulatus	Günther 1860
27	Cypriniformes	Catostomidae	Catostomus tsiltcoosensis	Evermann y Meek 1898
28	Cypriniformes	Catostomidae	Catostomus occidentalis	Ayres 1854
29	Cypriniformes	Leuciscidae	Ptychocheilus oregonensis	Richardson 1836
30	Cypriniformes	Leuciscidae	Richardsonius balteatus	Richardson 1836
31	Cypriniformes	Leuciscidae	Rhinichthys osculus	Girard 1856
32	Cypriniformes	Leuciscidae	Lavinia exilicauda	Baird y Girard 1854
33	Cypriniformes	Leuciscidae	Ptychocheilus grandis	Ayres 1854
34	Cyprinodontiformes	Poeciliidae	Poeciliopsis latidens	Garman 1895
35	Cyprinodontiformes	Poeciliidae	Poeciliopsis pleurospilus	Günther 1866
36	Cyprinodontiformes	Poeciliidae	Priapichthys chocoensis	Henn 1916
37	Perciformes	Cottidae	Cottus perplexus	Gilbert y Evermann 1894
38	Perciformes	Cottidae	Cottus rhotheus	Smith 1882
39	Perciformes	Cottidae	Cottus gulosus	Girard 1854
40	Perciformes	Percidae	Percina macrolepida	Stevenson 1971
41	Petromyzontiformes	Petromyzontidae	Lampetra richardsoni	Vladykov y Follett 1965
42	Salmoniformes	Esocidae	Dallia pectoralis	Bean 1880
43	Salmoniformes	Salmonidae	Prosopium williamsoni	Girard 1856
44	Salmoniformes	Salmonidae	Thymallus arcticus	Pallas 1776
45	Salmoniformes	Salmonidae	Salvelinus namaycush	Walbaum 1792
46	Siluriformes	Cetopsidae	Paracetopsis atahualpa	Vari, Ferraris y de Pinna 2005
47	Siluriformes	Heptapteridae	Rhamdia laticauda	Kner 1858
48	Siluriformes	Heptapteridae	Pimelodella elongata	Günther 1860
49	Siluriformes	Heptapteridae	Pimelodella yuncensis	Steindachner 1902
50	Siluriformes	Ictaluridae	Ameiurus nebulosus	Lesueur 1819
51	Siluriformes	Ictaluridae	Ameiurus catus	Linnaeus 1758
52	Siluriformes	Ictaluridae	Ameiurus melas	Rafinesque 1820
53	Siluriformes	Loricariidae	Chaetostoma microps	Günther 1864
54	Siluriformes	Trichomycteridae	Trichomycterus punctulatus	Valenciennes 1846

Tabla 8. Especies dulceacuícolas-salobres-marinas dentro de las localidades estuarinas del Pacífico Oriental.

N.º	Orden	Familia	Especies	Autor y Año
1	Acanthuriformes	Gerreidae	Gerres simillimus	Regan 1907
2	Acanthuriformes	Gerreidae	Diapterus brevirostris	Sauvage 1879
3	Acanthuriformes	Gerreidae	Eugerres lineatus	Humboldt 1821
4	Acanthuriformes	Gerreidae	Eucinostomus currani	Zahuranec 1980
5	Acanthuriformes	Gerreidae	Eucinostomus gracilis	Gill 1862
6	Acanthuriformes	Gerreidae	Eugerres axillaris	Günther 1864
7	Acanthuriformes	Haemulidae	Rhencus macracanthus	Günther 1864
8	Acanthuriformes	Haemulidae	Rhonciscus bayanus	Jordan y Evermann 1898
9	Acanthuriformes	Haemulidae	Pomadasys empherus	Bussing 1993
10	Acanthuriformes	Haemulidae	Haemulopsis leuciscus	Günther 1864
11	Acanthuriformes	Lutjanidae	Lutjanus argentiventris	Peters 1869
12	Acanthuriformes	Lutjanidae	Lutjanus novemfasciatus	Gill 1862
13	Acanthuriformes	Lutjanidae	Lutjanus colorado	Jordan y Gilbert 1882
14	Acanthuriformes	Moronidae	Morone saxatilis	Walbaum 1792
15	Acanthuriformes	Sciaenidae	Stellifer typicus	Gill 1863
16	Acipenseriformes	Acipenseridae	Acipenser medirostris	Ayres 1854
17	Acipenseriformes	Acipenseridae	Acipenser transmontanus	Richardson 1836
18	Atheriniformes	Atherinopsidae	Atherinops affinis	Ayres 1860
19	Atheriniformes	Atherinopsidae	Atherinella guatemalensis	Günther 1864
20	Atheriniformes	Atherinopsidae	Atherinella argentea	Chernoff 1986
21	Atheriniformes	Atherinopsidae	Odontesthes regia	Humboldt 1821
22	Atheriniformes	Atherinopsidae	Odontesthes nigricans	Richardson 1848
23	Batrachoidiformes	Batrachoididae	Batrachoides waltersi	Collette y Russo 1981
24	Batrachoidiformes	Batrachoididae	Batrachoides pacifici	Günther 1861
25	Beloniformes	Belonidae	Strongylura exilis	Girard 1854
26	Beloniformes	Belonidae	Ablennes hians	Valenciennes 1846
27	Beloniformes	Hemiramphidae	Hyporhamphus rosae	Jordan y Gilbert 1880
28	Beloniformes	Hemiramphidae	Hyporhamphus gilli	Meek y Hildebrand 1923
29	Blenniiformes	Dactyloscopidae	Dactyloscopus amnis	Miller y Briggs 1962
30	Blenniiformes	Embiotocidae	Cymatogaster aggregata	Gibbons 1854
31	Carangiformes	Achiridae	Trinectes fonsecensis	Günther 1862
32	Carangiformes	Achiridae	Trinectes fimbriatus	Günther 1864
33	Carangiformes	Achiridae	Trinectes fluviatilis	Meek y Hildebrand 1928
34	Carangiformes	Achiridae	Achirus mazatlanus	Steindachner 1869
35	Carangiformes	Carangidae	Caranx caninus	Günther 1867
36	Carangiformes	Carangidae	Caranx sexfasciatus	Quoy y Gaimard 1825
37	Carangiformes	Carangidae	Caranx vinctus	Jordan y Gilbert 1882

38	Carangiformes	Centropomidae	Centropomus medius	Günther 1864
39	Carangiformes	Centropomidae	Centropomus nigrescens	Günther 1864
40	Carangiformes	Centropomidae	Centropomus robalito	Jordan y Gilbert 1882
41	Carangiformes	Centropomidae	Centropomus viridis	Lockington 1877
42	Carangiformes	Cyclopsettidae	Citharichthys gilberti	Jenkins y Evermann 1889
43	Carangiformes	Pleuronectidae	Platichthys stellatus	Pallas 1787
44	Carangiformes	Pleuronectidae	Liopsetta glacialis	Pallas 1776
45	Carcharhiniformes	Carcharhinidae	Carcharhinus leucas	Valenciennes 1839
46	Carcharhiniformes	Galeocerdonidae	Galeocerdo cuvier	Péron y Lesueur 1822
47	Carcharhiniformes	Sphyrnidae	Sphyrna lewini	Griffith y Smith 1834
48	Clupeiformes	Clupeidae	Clupea pallasii	Valenciennes 1847
49	Clupeiformes	Dorosomatidae	Lile stolifera	Jordan y Gilbert 1882
50	Clupeiformes	Dorosomatidae	Lile gracilis	Castro-Aguirre y Vivero 1990
51	Clupeiformes	Engraulidae	Anchoa curta	Jordan y Gilbert 1882
52	Clupeiformes	Engraulidae	Anchoa spinifer	Valenciennes 1848
53	Cyprinodontiformes	Anablepidae	Anableps dowii	Gill 1861
54	Cyprinodontiformes	Fundulidae	Fundulus parvipinnis	Girard 1854
55	Cyprinodontiformes	Poeciliidae	Poeciliopsis turrubarensis	Meek 1912
56	Cyprinodontiformes	Poeciliidae	Poeciliopsis elongata	Günther 1866
57	Gadiformes	Gadidae	Eleginus gracilis	Tilesius 1810
58	Galaxiiformes	Galaxiidae	Aplochiton taeniatus	Jenyns 1842
59	Galaxiiformes	Galaxiidae	Aplochiton zebra	Jenyns 1842
60	Galaxiiformes	Galaxiidae	Galaxias maculatus	Jenyns 1842
61	Gobiiformes	Eleotridae	Erotelis armiger	Jordan y Richardson 1895
62	Gobiiformes	Eleotridae	Gobiomorus maculatus	Günther 1859
63	Gobiiformes	Eleotridae	Eleotris picta	Kner 1863
64	Gobiiformes	Eleotridae	Hemieleotris levis	Eigenmann 1918
65	Gobiiformes	Eleotridae	Dormitator latifrons	Richardson 1844
66	Gobiiformes	Gobiidae	Microgobius miraflorensis	Gilbert y Starks 1904
67	Gobiiformes	Gobiidae	Aboma etheostoma	Jordan y Starks 1895
68	Gobiiformes	Gobiidae	Microdesmus dorsipunctatus	Dawson 1968
69	Gobiiformes	Gobiidae	Bathygobius andrei	Sauvage 1880
70	Gobiiformes	Oxudercidae	Gillichthys mirabilis	Cooper 1864
71	Gobiiformes	Oxudercidae	Ctenogobius sagittula	Günther 1862
72	Gobiiformes	Oxudercidae	Evorthodus minutus	Meek y Hildebrand 1928
73	Gobiiformes	Oxudercidae	Awaous transandeanus	Günther 1861
74	Gobiiformes	Oxudercidae	Sicydium salvini	Ogilvie-Grant 1884
75	Gonorynchiformes	Chanidae	Chanos chanos	Fabricius 1775

76	Labriformes	Labridae	Halichoeres notospilus	Günther 1864
77	Labriformes	Labridae	Halichoeres aestuaricola	Bussing 1972
78	Labriformes	Pinguipedidae	Prolatilus jugularis	Valenciennes 1833
79	Mugiliformes	Mugilidae	Dajaus monticola	Bancroft 1834
80	Mugiliformes	Mugilidae	Chaenomugil proboscideus	Günther 1861
81	Mugiliformes	Mugilidae	Mugil cephalus	Linnaeus 1758
82	Osmeriformes	Osmeridae	Spirinchus thaleichthys	Ayres 1860
83	Osmeriformes	Osmeridae	Thaleichthys pacificus	Richardson 1836
84	Osmeriformes	Osmeridae	Osmerus mordax	Mitchill 1814
85	Osmeriformes	Osmeridae	Hypomesus olidus	Pallas 1814
86	Perciformes	Cottidae	Cottus asper	Richardson 1836
87	Perciformes	Gasterosteidae	Gasterosteus aculeatus	Linnaeus 1758
88	Perciformes	Hexagrammidae	Hexagrammos octogrammus	Pallas 1814
89	Perciformes	Psychrolutidae	Clinocottus acuticeps	Gilbert 1896
90	Perciformes	Psychrolutidae	Myoxocephalus quadricornis	Linnaeus 1758
91	Petromyzontiformes	Geotriidae	Geotria australis	Gray 1851
92	Petromyzontiformes	Petromyzontidae	Entosphenus tridentatus	Richardson 1836
93	Petromyzontiformes	Petromyzontidae	Lampetra ayresii	Günther 1870
94	Petromyzontiformes	Petromyzontidae	Lethenteron camtschaticum	Tilesius 1811
95	Rhinopristiformes	Pristidae	Pristis zephyreus	Jordan y Starks 1895
96	Salmoniformes	Salmonidae	Oncorhynchus clarkii	Richardson 1836
97	Salmoniformes	Salmonidae	Oncorhynchus keta	Walbaum 1792
98	Salmoniformes	Salmonidae	Oncorhynchus kisutch	Walbaum 1792
99	Salmoniformes	Salmonidae	Oncorhynchus mykiss	Walbaum 1792
100	Salmoniformes	Salmonidae	Oncorhynchus tshawytscha	Walbaum 1792
101	Salmoniformes	Salmonidae	Salvelinus malma	Walbaum 1792
102	Salmoniformes	Salmonidae	Oncorhynchus nerka	Walbaum 1792
103	Salmoniformes	Salmonidae	Oncorhynchus gorbuscha	Walbaum 1792
104	Salmoniformes	Salmonidae	Salvelinus alpinus	Linnaeus 1758
105	Salmoniformes	Salmonidae	Coregonus nasus	Pallas 1776
106	Salmoniformes	Salmonidae	Coregonus clupeaformis	Mitchill 1818
107	Salmoniformes	Salmonidae	Coregonus autumnalis	Pallas 1776
108	Salmoniformes	Salmonidae	Coregonus albula	Linnaeus 1758
109	Salmoniformes	Salmonidae	Coregonus laurettae	Bean 1881
110	Salmoniformes	Salmonidae	Prosopium cylindraceum	Pennant 1784
111	Salmoniformes	Salmonidae	Coregonus pidschian	Gmelin 1789
112	Salmoniformes	Salmonidae	Stenodus nelma	Pallas 1773
113	Siluriformes	Ariidae	Ariopsis seemanni	Günther 1864
114	Siluriformes	Ariidae	Cathorops fuerthii	Steindachner 1876
115	Siluriformes	Ariidae	Cathorops multiradiatus	Günther 1864

116	Tetraodontiformes	Tetraodontidae	Sphoeroides annulatus	Jenyns 1842
117	Tetraodontiformes	Tetraodontidae	Sphoeroides rosenblatti	Bussing 1996

Tabla 9. Especies salobres-marinas dentro de las localidades estuarinas del Pacífico Oriental.

N.º	Orden	Familia	Especies	Autor y Año
1	Acanthuriformes	Gerreidae	Eucinostomus dowii	Gill 1863
2	Acanthuriformes	Gerreidae	Eucinostomus entomelas	Zahuranec 1980
3	Acanthuriformes	Haemulidae	Haemulon steindachneri	Jordan y Gilbert 1882
4	Acanthuriformes	Haemulidae	Rhonciscus branickii	Steindachner 1879
5	Acanthuriformes	Latilidae	Caulolatilus affinis	Gill 1865
6	Acanthuriformes	Lutjanidae	Lutjanus guttatus	Steindachner 1869
7	Acanthuriformes	Sciaenidae	Cynoscion parvipinnis	Ayres 1861
8	Acanthuriformes	Sciaenidae	Cynoscion xanthulus	Jordan y Gilbert 1882
9	Acanthuriformes	Sciaenidae	Bairdiella icistia	Jordan y Gilbert 1882
10	Acanthuriformes	Sciaenidae	Paralonchurus goodei	Gilbert 1898
11	Acanthuriformes	Sciaenidae	Cynoscion reticulatus	Günther 1864
12	Acanthuriformes	Sciaenidae	Micropogonias altipinnis	Günther 1864
13	Acanthuriformes	Sciaenidae	Stellifer strabo	Gilbert 1897
14	Acanthuriformes	Sciaenidae	Cynoscion albus	Günther 1864
15	Acanthuriformes	Sciaenidae	Totoaba macdonaldi	Gilbert 1890
16	Acanthuriformes	Sciaenidae	Cynoscion squamipinnis	Günther 1867
17	Acanthuriformes	Sciaenidae	Bairdiella ensifera	Jordan y Gilbert 1882
18	Acanthuriformes	Sciaenidae	Isopisthus altipinnis	Steindachner 1866
19	Acanthuriformes	Sciaenidae	Cynoscion stolzmanni	Steindachner 1879
20	Acanthuriformes	Sciaenidae	Bairdiella armata	Gill 1863
21	Acanthuriformes	Sciaenidae	Nebris occidentalis	Vaillant 1897
22	Acanthuriformes	Sciaenidae	Paralonchurus dumerilii	Bocourt 1869
23	Acanthuriformes	Sciaenidae	Larimus argenteus	Gill 1863
24	Acanthuriformes	Sciaenidae	Stellifer zestocarus	Gilbert 1898
25	Acanthuriformes	Sciaenidae	Macrodon mordax	Gilbert y Starks 1904
26	Acanthuriformes	Sciaenidae	Cynoscion analis	Jenyns 1842
27	Atheriniformes	Atherinopsidae	Membras gilberti	Jordan y Bollman 1890
28	Atheriniformes	Atherinopsidae	Atherinella pachylepis	Günther 1864
29	Atheriniformes	Atherinopsidae	Atherinella serrivomer	Chernoff 1986
30	Beloniformes	Hemiramphidae	Hyporhamphus naos	Banford y Collette 2001
31	Blenniiformes	Blenniidae	Hypsoblennius gentilis	Girard 1854
32	Blenniiformes	Embiotocidae	Amphistichus rhodoterus	Agassiz 1854
33	Blenniiformes	Labrisomidae	Paraclinus integripinnis	Smith 1880
34	Carangiformes	Achiridae	Achirus scutum	Günther 1862
35	Carangiformes	Carangidae	Seriola dorsalis	Gill 1863

	Carangiformes	Carangidae	Chloroscombrus orqueta	Jordan y Gilbert 1883
36	Carangiformes	Carangidae	Hemicaranx leucurus	Günther 1864
37	Carangiformes	Carangidae	Hemicaranx zelotes	Gilbert 1898
38	Carangiformes	Carangidae		Cuvier 1833
39			Caranx melampygus	
40	Carangiformes	Carangidae	Caranx caballus	Günther 1868
41	Carangiformes	Carangidae	Oligoplites refulgens	Gilbert y Starks 1904
42	Carangiformes	Carangidae	Trachinotus kennedyi	Steindachner 1875
43	Carangiformes	Carangidae	Oligoplites altus	Günther 1868
44	Carangiformes	Carangidae	Oligoplites inornatus	Gill 1863
45	Carangiformes	Centropomidae	Centropomus armatus	Gill 1863
46	Carangiformes	Centropomidae	Centropomus unionensis	Bocourt 1868
47	Carangiformes	Cyclopsettidae	Cyclopsetta panamensis	Steindachner 1875
48	Carangiformes	Cyclopsettidae	Etropus crossotus	Jordan y Gilbert 1882
49	Carangiformes	Cyclopsettidae	Cyclopsetta querna	Jordan y Bollman 1890
50	Carangiformes	Cyclopsettidae	Etropus ectenes	Jordan 1889
51	Carangiformes	Cynoglossidae	Symphurus chabanaudi	Mahadeva y Munroe 1990
52	Carangiformes	Cynoglossidae	Symphurus elongatus	Günther 1868
53	Carangiformes	Cynoglossidae	Symphurus melanurus	Clark 1936
54	Carangiformes	Paralichthyidae	Paralichthys californicus	Ayres 1859
55	Carangiformes	Paralichthyidae	Paralichthys woolmani	Jordan y Williams 1897
56	Carangiformes	Paralichthyidae	Paralichthys aestuarius	Gilbert y Scofield 1898
57	Carangiformes	Pleuronectidae	Pleuronichthys guttulatus	Girard 1856
58	Carangiformes	Pleuronectidae	Pleuronectes quadrituberculatus	Pallas 1814
59	Carangiformes	Pleuronectidae	Myzopsetta proboscidea	Gilbert 1896
60	Carangiformes	Polynemidae	Polydactylus approximans	Lay y Bennett 1839
61	Carangiformes	Polynemidae	Polydactylus opercularis	Gill 1863
62	Carangiformes	Sphyraenidae	Sphyraena ensis	Jordan y Gilbert 1882
63	Carcharhiniformes	Carcharhinidae	Carcharhinus limbatus	Valenciennes 1839
64	Carcharhiniformes	Carcharhinidae	Carcharhinus cerdale	Gilbert 1898
65	Carcharhiniformes	Carcharhinidae	Negaprion fronto	Jordan y Gilbert 1882
66	Carcharhiniformes	Sphyrnidae	Sphyrna zygaena	Linnaeus 1758
67	Carcharhiniformes	Sphyrnidae	Sphyrna vespertina	Springer 1940
68	Clupeiformes	Dorosomatidae	Opisthonema libertate	Günther 1867
69	Clupeiformes	Dorosomatidae	Harengula thrissina	Jordan y Gilbert 1882
70	Clupeiformes	Engraulidae	Anchoa compressa	Girard 1858
71	Clupeiformes	Engraulidae	Anchoa delicatissima	Girard 1854
72	Clupeiformes	Engraulidae	Cetengraulis mysticetus	Günther 1867
73	Clupeiformes	Engraulidae	Anchovia macrolepidota	Kner 1863
74	Clupeiformes	Engraulidae	Anchoa lucida	Jordan y Gilbert 1882
75	Clupeiformes	Engraulidae	Anchoa mundeola	Gilbert y Pierson 1898
, 5			1	-

	Clupeiformes	Engraulidae	Anchoa nasus	Kner y Steindachner
76	Clupeiformes	Engraulidae	Anchoa panamensis	1867 Steindachner 1876
77	Clupeiformes	Engraulidae	Anchoa analis	Miller 1945
78	Clupeiformes	Engraulidae	Anchoa walkeri	Baldwin y Chang 1970
79	Clupeiformes	Engraulidae	Anchoa starksi	Gilbert y Pierson 1898
80	Clupeiformes	Engraulidae	Lycengraulis poeyi	Kner 1863
81	Clupeiformes	Engraulidae	Anchoa ischana	Jordan y Gilbert 1882
82	Clupeiformes	_		Steindachner 1875
83	-	Pristigasteridae	Ilisha fuerthii	
84	Clupeiformes	Pristigasteridae	Opisthopterus dovii	Günther 1868
85	Clupeiformes	Pristigasteridae	Odontognathus panamensis	Steindachner 1876
86	Clupeiformes	Pristigasteridae	Neoopisthopterus tropicus	Hildebrand 1946
87	Clupeiformes	Pristigasteridae	Opisthopterus equatorialis	Hildebrand 1946
88	Elopiformes	Elopidae	Elops affinis	Regan 1909
89	Gadiformes	Gadidae	Microgadus proximus	Girard 1854
90	Gadiformes	Gadidae	Boreogadus saida	Lepechin 1774
91	Gobiiformes	Gobiidae	Gobiosoma chiquita	Jenkins y Evermann 1889
92	Gobiiformes	Gobiidae	Gobiosoma paradoxum	Günther 1861
93	Gobiiformes	Gobiidae	Microdesmus dipus	Günther 1864
94	Gobiiformes	Gobiidae	Microgobius emblematicus	Jordan y Gilbert 1882
95	Gobiiformes	Gobiidae	Microgobius tabogensis	Hildebrand 1928
96	Gobiiformes	Gobiidae	Microdesmus suttkusi	Gilbert 1966
97	Gobiiformes	Gobiidae	Parrella lucretiae	Eigenmann y Eigenmann 1888
98	Gobiiformes	Gobiidae	Cerdale ionthas	Jordan y Gilbert 1882
99	Gobiiformes	Gobiidae	Cerdale paludicola	Dawson 1974
100	Gobiiformes	Gobiidae	Ophiogobius jenynsi	Hoese 1976
101	Gobiiformes	Gobiidae	Microgobius brevispinis	Ginsburg 1939
102	Gobiiformes	Gobiidae	Microgobius cyclolepis	Gilbert 1890
103	Gobiiformes	Oxudercidae	Clevelandia ios	Jordan y Gilbert 1882
104	Gobiiformes	Oxudercidae	Eucyclogobius newberryi	Girard 1856
105	Gobiiformes	Oxudercidae	Quietula y cauda	Jenkins y Evermann 1889
106	Gobiiformes	Oxudercidae	Ctenogobius manglicola	Jordan y Starks 1895
107	Gobiiformes	Oxudercidae	Evermannia zosterura	Jordan y Gilbert 1882
108	Gobiiformes	Oxudercidae	Gobionellus microdon	Gilbert 1892
109	Labriformes	Ammodytidae	Ammodytes hexapterus	Pallas 1814
110	Mugiliformes	Mugilidae	Mugil hospes	Jordan y Culver 1895
111	Myliobatiformes	Aetobatidae	Aetobatus laticeps	Gill 1865
112	Myliobatiformes	Gymnuridae	Gymnura marmorata	Cooper 1864
	Myliobatiformes	Urotrygonidae	Urobatis tumbesensis	Chirichigno F. y
113	Osmeriformes	Osmeridae	Hypomesus pretiosus	McEachran 1979 Girard 1854
114	Osmernonies	Osmenuae	11ypomesus prenosus	GHaiu 1054

115	Perciformes	Agonidae	Blepsias cirrhosus	Pallas 1814
116	Perciformes	Agonidae	Occella dodecaedron	Tilesius 1813
117	Perciformes	Cottidae	Leptocottus armatus	Girard 1854
118	Perciformes	Epinephelidae	Mycteroperca xenarcha	Jordan 1888
119	Perciformes	Hexagrammidae	Hexagrammos lagocephalus	Pallas 1810
120	Perciformes	Hexagrammidae	Hexagrammos stelleri	Tilesius 1810
121	Perciformes	Psychrolutidae	Myoxocephalus scorpius	Linnaeus 1758
122	Perciformes	Psychrolutidae	Megalocottus platycephalus	Pallas 1814
123	Perciformes	Triglidae	Prionotus stephanophrys	Lockington 1881
124	Rhinopristiformes	Rhinobatidae	Pseudobatos productus	Ayres 1854
125	Scombriformes	Scombridae	Scomberomorus concolor	Lockington 1879
126	Siluriformes	Ariidae	Bagre panamensis	Gill 1863
127	Siluriformes	Ariidae	Notarius planiceps	Steindachner 1876
128	Siluriformes	Ariidae	Bagre pinnimaculatus	Steindachner 1876
129	Siluriformes	Ariidae	Notarius kessleri	Steindachner 1876
130	Siluriformes	Ariidae	Notarius troschelii	Gill 1863
131	Siluriformes	Ariidae	Cathorops dasycephalus	Günther 1864
132	Siluriformes	Ariidae	Notarius osculus	Jordania y Gilbert 1883
133	Siluriformes	Ariidae	Ariopsis guatemalensis	Günther 1864
134	Syngnathiformes	Syngnathidae	Syngnathus auliscus	Swain 1882
135	Syngnathiformes	Syngnathidae	Leptonotus blainvilleanus	Eydoux y Gervais 1837
136	Tetraodontiformes	Balistidae	Pseudobalistes naufragium	Jordan y Starks 1895
137	Tetraodontiformes	Diodontidae	Diodon hystrix	Linnaeus 1758
138	Tetraodontiformes	Tetraodontidae	Arothron hispidus	Linnaeus 1758
139	Tetraodontiformes	Tetraodontidae	Sphoeroides lobatus	Steindachner 1870
140	Torpediniformes	Narcinidae	Narcine entemedor	Jordan y Starks 1895

Tabla 10. Especies marinas dentro de las localidades estuarinas del Pacífico Oriental.

N.º	Orden	Familia	Especies	Autor y Año
1	Acanthuriformes	Acanthuridae	Acanthurus achilles	Shaw 1803
2	Acanthuriformes	Acanthuridae	Acanthurus nigricans	Linnaeus 1758
3	Acanthuriformes	Acanthuridae	Acanthurus triostegus	Linnaeus 1758
4	Acanthuriformes	Acanthuridae	Acanthurus xanthopterus	Valenciennes 1835
5	Acanthuriformes	Chaetodontidae	Chaetodon humeralis	Günther 1860
6	Acanthuriformes	Chaetodontidae	Johnrandallia nigrirostris	Gill 1862
7	Acanthuriformes	Chaetodontidae	Forcipiger flavissimus	Jordan & McGregor 1898
8	Acanthuriformes	Ephippidae	Parapsettus panamensis	Steindachner 1875
9	Acanthuriformes	Ephippidae	Chaetodipterus zonatus	Girard 1858
10	Acanthuriformes	Gerreidae	Deckertichthys aureolus	Jordan & Gilbert 1882

11	Acanthuriformes	Gerreidae	Eugerres brevimanus	Günther 1864
12	Acanthuriformes	Haemulidae	Brachygenys californiensis	Steindachner 1875
13	Acanthuriformes	Haemulidae	Anisotremus davidsonii	Steindachner 1875
14	Acanthuriformes	Haemulidae	Anisotremus interruptus	Gill 1862
15	Acanthuriformes	Haemulidae	Orthopristis reddingi	Jordan & Richardson 1895
16	Acanthuriformes	Haemulidae	Rhencus panamensis	Steindachner 1875
17	Acanthuriformes	Haemulidae	Haemulon flaviguttatum	Gill 1862
18	Acanthuriformes	Haemulidae	Orthopristis chalcea	Günther 1864
19	Acanthuriformes	Haemulidae	Conodon serrifer	Jordan & Gilbert 1882
20	Acanthuriformes	Haemulidae	Orthopristis cantharina	Jenyns 1840
21	Acanthuriformes	Haemulidae	Xenichthys xanti	Gill 1863
22	Acanthuriformes	Haemulidae	Genyatremus dovii	Günther 1864
23	Acanthuriformes	Haemulidae	Genyatremus pacifici	Günther 1865
24	Acanthuriformes	Haemulidae	Anisotremus caesius	Jordan & Gilbert 1882
25	Acanthuriformes	Haemulidae	Anisotremus taeniatus	Gill 1861
26	Acanthuriformes	Haemulidae	Microlepidotus inornatus	Gill 1862
27	Acanthuriformes	Haemulidae	Haemulon maculicauda	Gill 1862
28	Acanthuriformes	Haemulidae	Haemulon scudderii	Gill 1862
29	Acanthuriformes	Haemulidae	Haemulon sexfasciatum	Gill 1863
30	Acanthuriformes	Haemulidae	Haemulopsis axillaris	Steindachner 1869
31	Acanthuriformes	Haemulidae	Haemulopsis elongata	Steindachner 1879
32	Acanthuriformes	Haemulidae	Haemulopsis nitida	Steindachner 1869
33	Acanthuriformes	Latilidae	Caulolatilus princeps	Jenyns 1840
34	Acanthuriformes	Lobotidae	Lobotes pacifica	Gilbert 1898
35	Acanthuriformes	Lutjanidae	Hoplopagrus guentherii	Gill 1862
36	Acanthuriformes	Lutjanidae	Lutjanus aratus	Günther 1864
37	Acanthuriformes	Lutjanidae	Lutjanus peru	Nichols & Murphy 1922
38	Acanthuriformes	Pomacanthidae	Holacanthus passer	Valenciennes 1846
39	Acanthuriformes	Pomacanthidae	Pomacanthus zonipectus	Gill 1862
40	Acanthuriformes	Priacanthidae	Cookeolus japonicus	Cuvier 1829
41	Acanthuriformes	Priacanthidae	Pristigenys serrula	Gilbert 1891
42	Acanthuriformes	Sciaenidae	Genyonemus lineatus	Ayres 1855
43	Acanthuriformes	Sciaenidae	Atractoscion nobilis	Ayres 1860
44	Acanthuriformes	Sciaenidae	Seriphus politus	Ayres 1860
45	Acanthuriformes	Sciaenidae	Cheilotrema saturnum	Girard 1858
46	Acanthuriformes	Sciaenidae	Umbrina roncador	Jordan & Gilbert 1882
47	Acanthuriformes	Sciaenidae	Roncador stearnsii	Steindachner 1875
48	Acanthuriformes	Sciaenidae	Menticirrhus undulatus	Girard 1854
49	Acanthuriformes	Sciaenidae	Umbrina xanti	Gill 1862
50	Acanthuriformes	Sciaenidae	Cynoscion phoxocephalus	Jordan & Gilbert 1882
51	Acanthuriformes	Sciaenidae	Larimus pacificus	Jordan & Bollman 1890

	1 10	I a · · · ·	1.6	0, 1, 10.60
52	Acanthuriformes	Sciaenidae	Menticirrhus nasus	Günther 1868
53	Acanthuriformes	Sciaenidae	Umbrina analis	Günther 1868
54	Acanthuriformes	Sciaenidae	Umbrina wintersteeni	Walker & Radford 1992
55	Acanthuriformes	Sciaenidae	Larimus acclivis	Jordan & Bristol 1898
56	Acanthuriformes	Sciaenidae	Menticirrhus elongatus	Günther 1864
57	Acanthuriformes	Sciaenidae	Elattarchus archidium	Jordan & Gilbert 1882
58	Acanthuriformes	Sciaenidae	Larimus effulgens	Gilbert 1898
59	Acanthuriformes	Sciaenidae	Stellifer wintersteenorum	Chao 2001
60	Acanthuriformes	Sciaenidae	Stellifer walkeri	Chao 2001
61	Acanthuriformes	Sciaenidae	Stellifer oscitans	Jordan & Gilbert 1882
62	Acanthuriformes	Sciaenidae	Stellifer scierus	Jordan & Gilbert 1884
63	Acanthuriformes	Sciaenidae	Stellifer imiceps	Jordan & Gilbert 1882
64	Acanthuriformes	Sciaenidae	Stellifer chrysoleuca	Günther 1867
65	Acanthuriformes	Sciaenidae	Cynoscion praedatorius	Jordania y Gilbert 1889
66	Acanthuriformes	Sciaenidae	Stellifer ericymba	Jordan & Gilbert 1882
67	Acanthuriformes	Sciaenidae	Stellifer fuerthii	Steindachner 1875
68	Acanthuriformes	Sciaenidae	Pareques viola	Gilbert 1898
69	Acanthuriformes	Sciaenidae	Menticirrhus panamensis	Steindachner 1876
70	Acanthuriformes	Sparidae	Calamus brachysomus	Lockington 1880
71	Acanthuriformes	Zanclidae	Zanclus cornutus	Linnaeus 1758
72	Acropomatiformes	Polyprionidae	Polyprion oxygeneios	Schneider & Forster 1801
73	Acropomatiformes	Stereolepididae	Stereolepis gigas	Ayres 1859
74	Albuliformes	Albulidae	Albula pacifica	Beebe 1942
75	Albuliformes	Albulidae	Albula esuncula	Garman 1899
76	Anguilliformes	Congridae	Paraconger californiensis	Kanazawa 1961
77	Anguilliformes	Congridae	Rhynchoconger nitens	Jordan & Bollman 1890
78	Anguilliformes	Congridae	Ariosoma gilberti	Ogilby 1898
79	Anguilliformes	Congridae	Gorgasia punctata	Meek & Hildebrand 1923
80	Anguilliformes	Heterenchelyidae	Pythonichthys asodes	Rosenblatt & Rubinoff 1972
81	Anguilliformes	Moringuidae	Neoconger vermiformis	Gilbert 1890
82	Anguilliformes	Muraenesocidae	Cynoponticus coniceps	Jordan & Gilbert 1882
83	Anguilliformes	Muraenidae	Gymnothorax mordax	Ayres 1859
84	Anguilliformes	Muraenidae	Anarchias galapagensis	Seale 1940
85	Anguilliformes	Muraenidae	Echidna nebulosa	Ahl 1789
86	Anguilliformes	Muraenidae	Enchelycore octaviana	Myers & Wade 1941
87	Anguilliformes	Muraenidae	Gymnothorax castaneus	Jordan & Gilbert 1883
88	Anguilliformes	Muraenidae	Gymnothorax dovii	Günther 1870
89	Anguilliformes	Muraenidae	Gymnothorax equatorialis	Hildebrand 1946
90	Anguilliformes	Muraenidae	Gymnothorax panamensis	Steindachner 1876
		1		L

91	Anguilliformes	Muraenidae	Gymnothorax verrilli	Jordan & Gilbert 1883
92	Anguilliformes	Muraenidae	Muraena clepsydra	Gilbert 1898
93	Anguilliformes	Muraenidae	Muraena lentiginosa	Jenyns 1842
94	Anguilliformes	Muraenidae	Scuticaria tigrina	Lesson 1828
95	Anguilliformes	Muraenidae	Uropterygius macrocephalus	Bleeker 1864
96	Anguilliformes	Muraenidae	Uropterygius polystictus	Myers & Wade 1941
97	Anguilliformes	Muraenidae	Muraena argus	Steindachner 1870
98	Anguilliformes	Ophichthidae	Ophichthus triserialis	Kaup 1857
99	Anguilliformes	Ophichthidae	Callechelys eristigma	McCosker & Rosenblatt 1972
100	Anguilliformes	Ophichthidae	Herpetoichthys fossatus	Myers & Wade 1941
101	Anguilliformes	Ophichthidae	Ichthyapus selachops	Jordan & Gilbert 1882
102	Anguilliformes	Ophichthidae	Myrichthys xysturus	Jordan & Gilbert 1882
103	Anguilliformes	Ophichthidae	Myrophis vafer	Jordan & Gilbert 1883
104	Anguilliformes	Ophichthidae	Phaenomonas pinnata	Myers & Wade 1941
105	Anguilliformes	Ophichthidae	Pseudomyrophis micropinna	Wade 1946
106	Anguilliformes	Ophichthidae	Ophichthus zophochir	Jordan & Gilbert 1882
107	Anguilliformes	Ophichthidae	Bascanichthys bascanoides	Osburn & Nichols 1916
108	Anguilliformes	Ophichthidae	Ethadophis byrnei	Rosenblatt & McCosker 1970
109	Anguilliformes	Ophichthidae	Ophichthus longipenis	McCosker & Rosenblatt 1998
110	Anguilliformes	Ophichthidae	Pisodonophis daspilotus	Gilbert 1898
111	Anguilliformes	Ophichthidae	Ophichthus remiger	Valenciennes 1837
112	Anguilliformes	Ophichthidae	Ethadophis merenda	Rosenblatt & McCosker 1970
113	Argentiniformes	Bathylagidae	Bathylagus pacificus	Gilbert 1890
114	Argentiniformes	Bathylagidae	Bathylagichthys parini	Kobyliansky 1990
115	Atheriniformes	Atherinopsidae	Atherinopsis californiensis	Girard 1854
116	Atheriniformes	Atherinopsidae	Leuresthes tenuis	Ayres 1860
117	Atheriniformes	Atherinopsidae	Atherinella eriarcha	Jordan & Gilbert 1882
118	Atheriniformes	Atherinopsidae	Leuresthes sardina	Jenkins & Evermann 1889
119	Atheriniformes	Atherinopsidae	Colpichthys regis	Jenkins & Evermann 1889
120	Atheriniformes	Atherinopsidae	Atherinella panamensis	Steindachner 1875
121	Atheriniformes	Atherinopsidae	Odontesthes smitti	Lahille 1929
122	Atheriniformes	Atherinopsidae	Atherinella nepenthe	Myers & Wade 1942
123	Aulopiformes	Alepisauridae	Alepisaurus ferox	Lowe 1833
124	Aulopiformes	Synodontidae	Synodus lucioceps	Ayres 1855
125	Aulopiformes	Synodontidae	Synodus lacertinus	Gilbert 1890
126	Aulopiformes	Synodontidae	Synodus scituliceps	Jordan & Gilbert 1882
127	Aulopiformes	Synodontidae	Synodus evermanni	Jordan & Bollman 1890

128	Aulopiformes	Synodontidae	Synodus sechurae	Hildebrand 1946
129	Batrachoidiformes	Batrachoididae	Porichthys notatus	Girard 1854
130	Batrachoidiformes	Batrachoididae	Porichthys myriaster	Hubbs & Schultz 1939
131	Batrachoidiformes	Batrachoididae	Porichthys analis	Hubbs & Schultz 1939
132	Batrachoidiformes	Batrachoididae	Porichthys margaritatus	Richardson 1844
133	Batrachoidiformes	Batrachoididae	Batrachoides boulengeri	Gilbert & Starks 1904
134	Batrachoidiformes	Batrachoididae	Porichthys greenei	Gilbert & Starks 1904
135	Batrachoidiformes	Batrachoididae	Daector dowi	Jordan & Gilbert 1887
136	Batrachoidiformes	Batrachoididae	Aphos porosus	Valenciennes 1837
137	Beloniformes	Belonidae	Tylosurus fodiator	Jordan & Gilbert 1882
138	Beloniformes	Belonidae	Tylosurus pacificus	Steindachner 1875
139	Beloniformes	Belonidae	Strongylura scapularis	Jordan & Gilbert 1882
140	Beloniformes	Exocoetidae	Cypselurus callopterus	Günther 1866
141	Beloniformes	Hemiramphidae	Hemiramphus saltator	Gilbert & Starks 1904
142	Beloniformes	Hemiramphidae	Hyporhamphus snyderi	Meek & Hildebrand 1923
143	Beryciformes	Holocentridae	Myripristis leiognathus	Valenciennes 1846
144	Beryciformes	Holocentridae	Neoniphon suborbitalis	Gill 1863
145	Blenniiformes	Blenniidae	Entomacrodus chiostictus	Jordan & Gilbert 1882
146	Blenniiformes	Blenniidae	Hypsoblennius brevipinnis	Günther 1861
147	Blenniiformes	Blenniidae	Ophioblennius steindachneri	Jordan & Evermann 1898
148	Blenniiformes	Blenniidae	Plagiotremus azaleus	Jordan & Bollman 1890
149	Blenniiformes	Blenniidae	Hypsoblennius sordidus	Bennett 1828
150	Blenniiformes	Blenniidae	Hypsoblennius jenkinsi	Jordan & Evermann 1896
151	Blenniiformes	Chaenopsidae	Neoclinus uninotatus	Hubbs 1953
152	Blenniiformes	Chaenopsidae	Acanthemblemaria crockeri	Beebe & Tee-Van 1938
153	Blenniiformes	Chaenopsidae	Chaenopsis alepidota	Gilbert 1890
154	Blenniiformes	Chaenopsidae	Cirriemblemaria lucasana	Stephens 1963
155	Blenniiformes	Chaenopsidae	Coralliozetus angelicus	Böhlke & Mead 1957
156	Blenniiformes	Chaenopsidae	Coralliozetus boehlkei	Stephens 1963
157	Blenniiformes	Chaenopsidae	Coralliozetus micropes	Beebe & Tee-Van 1938
158	Blenniiformes	Chaenopsidae	Emblemaria hypacanthus	Jenkins & Evermann 1889
159	Blenniiformes	Chaenopsidae	Protemblemaria bicirrus	Hildebrand 1946
160	Blenniiformes	Clinidae	Gibbonsia metzi	Hubbs 1927
161	Blenniiformes	Clinidae	Heterostichus rostratus	Girard 1854
162	Blenniiformes	Clinidae	Gibbonsia montereyensis	Hubbs 1927
163	Blenniiformes	Clinidae	Gibbonsia elegans	Cooper 1864
164	Blenniiformes	Clinidae	Myxodes cristatus	Valenciennes 1836
165	Blenniiformes	Clinidae	Myxodes viridis	Valenciennes 1836

166	Blenniiformes	Dactyloscopidae	Dactylagnus mundus	Gill 1863
167	Blenniiformes	Dactyloscopidae	Dactyloscopus byersorum	Dawson 1969
168	Blenniiformes	Dactyloscopidae	Dactyloscopus lunaticus	Gilbert 1890
169	Blenniiformes	Dactyloscopidae	Dactyloscopus pectoralis	Gill 1861
170	Blenniiformes	Dactyloscopidae	Dactylagnus parvus	Dawson 1976
171	Blenniiformes	Dactyloscopidae	Heteristius cinctus	Osburn & Nichols 1916
172	Blenniiformes	Embiotocidae	Hyperprosopon ellipticum	Gibbons 1854
173	Blenniiformes	Embiotocidae	Phanerodon vacca	Girard 1855
174	Blenniiformes	Embiotocidae	Embiotoca lateralis	Agassiz 1854
175	Blenniiformes	Embiotocidae	Phanerodon furcatus	Girard 1854
176	Blenniiformes	Embiotocidae	Hyperprosopon argenteum	Gibbons 1854
177	Blenniiformes	Embiotocidae	Hypocritichthys analis	Agassiz 1861
178	Blenniiformes	Embiotocidae	Amphistichus koelzi	Hubbs 1933
179	Blenniiformes	Embiotocidae	Rhacochilus toxotes	Agassiz 1854
180	Blenniiformes	Embiotocidae	Micrometrus minimus	Gibbons 1854
181	Blenniiformes	Embiotocidae	Embiotoca caryi	Agassiz 1853
182	Blenniiformes	Embiotocidae	Embiotoca jacksoni	Agassiz 1853
183	Blenniiformes	Embiotocidae	Amphistichus argenteus	Agassiz 1854
184	Blenniiformes	Embiotocidae	Phanerodon atripes	Jordan & Gilbert 1880
185	Blenniiformes	Embiotocidae	Micrometrus aurora	Jordan & Gilbert 1880
186	Blenniiformes	Embiotocidae	Brachyistius frenatus	Gill 1862
187	Blenniiformes	Gobiesocidae	Gobiesox maeandricus	Girard 1858
188	Blenniiformes	Gobiesocidae	Rimicola muscarum	Meek & Pierson 1895
189	Blenniiformes	Gobiesocidae	Gobiesox pinniger	Gilbert 1890
190	Blenniiformes	Gobiesocidae	Tomicodon boehlkei	Briggs 1955
191	Blenniiformes	Gobiesocidae	Tomicodon humeralis	Gilbert 1890
192	Blenniiformes	Gobiesocidae	Tomicodon zebra	Jordan & Gilbert 1882
193	Blenniiformes	Gobiesocidae	Gobiesox adustus	Jordan & Gilbert 1882
194	Blenniiformes	Gobiesocidae	Gobiesox papillifer	Gilbert 1890
195	Blenniiformes	Gobiesocidae	Gobiesox marmoratus	Jenyns 1842
196	Blenniiformes	Gobiesocidae	Sicyases sanguineus	Müller y Troschel 1843
197	Blenniiformes	Gobiesocidae	Arcos erythrops	Jordan & Gilbert 1882
198	Blenniiformes	Gobiesocidae	Rimicola eigenmanni	Gilbert 1890
199	Blenniiformes	Gobiesocidae	Gobiesox rhessodon	Smith 1881
200	Blenniiformes	Labrisomidae	Paraclinus walkeri	Hubbs 1952
201	Blenniiformes	Labrisomidae	Paraclinus asper	Jenkins & Evermann 1889
202	Blenniiformes	Labrisomidae	Labrisomus xanti	Gill 1860
203	Blenniiformes	Labrisomidae	Malacoctenus hubbsi	Springer 1959
204	Blenniiformes	Labrisomidae	Malacoctenus sudensis	Jordan & Gilbert 1882
		1	ı	ı

	Blenniiformes	Labrisomidae	Paraclinus altivelis	Lockington 1881
205	Blenniiformes		Paraclinus beebei	
206		Labrisomidae		Hubbs 1952
207	Blenniiformes	Labrisomidae	Paraclinus mexicanus	Gilbert 1904
208	Blenniiformes	Labrisomidae	Paraclinus tanygnathus	Rosenblatt & Parr 1969
209	Blenniiformes	Labrisomidae	Starksia cremnobates	Gilbert 1890
210	Blenniiformes	Labrisomidae	Stathmonotus sinuscalifornici	Chabanaud 1942
211	Blenniiformes	Labrisomidae	Xenomedea rhodopyga	Rosenblatt & Taylor 1971
212	Blenniiformes	Labrisomidae	Calliclinus geniguttatus	Valenciennes 1836
213	Blenniiformes	Labrisomidae	Labrisomus wigginsi	Hubbs 1953
214	Blenniiformes	Labrisomidae	Malacoctenus tetranemus	Cope 1877
215	Blenniiformes	Labrisomidae	Paraclinus magdalenae	Rosenblatt & Parr 1969
216	Blenniiformes	Labrisomidae	Labrisomus multiporosus	Hubbs 1953
217	Blenniiformes	Labrisomidae	Paraclinus sini	Hubbs 1952
218	Blenniiformes	Opistognathidae	Opistognathus punctatus	Peters 1869
219	Blenniiformes	Opistognathidae	Lonchopisthus sinuscalifornicus	Castro-Aguirre & Villavicencio-Garayzar 1988
220	Blenniiformes	Opistognathidae	Opistognathus rosenblatti	Allen & Robertson 1991
221	Blenniiformes	Opistognathidae	Opistognathus rhomaleus	Jordan & Gilbert 1882
222	Blenniiformes	Pomacentridae	Hypsypops rubicundus	Girard 1854
223	Blenniiformes	Pomacentridae	Abudefduf troschelii	Gill 1862
224	Blenniiformes	Pomacentridae	Abudefduf concolor	Gill 1862
225	Blenniiformes	Pomacentridae	Azurina atrilobata	Gill 1862
226	Blenniiformes	Pomacentridae	Chromis limbaughi	Greenfield & Woods 1980
227	Blenniiformes	Pomacentridae	Microspathodon dorsalis	Gill 1862
228	Blenniiformes	Pomacentridae	Stegastes flavilatus	Gill 1862
229	Blenniiformes	Pomacentridae	Stegastes rectifraenum	Gill 1862
230	Blenniiformes	Pomacentridae	Stegastes leucorus	Gilberto 1892
231	Blenniiformes	Pomacentridae	Chromis alta	Greenfield & Woods 1980
232	Blenniiformes	Tripterygiidae	Axoclinus nigricaudus	Allen & Robertson 1991
233	Blenniiformes	Tripterygiidae	Crocodilichthys gracilis	Allen & Robertson 1991
234	Blenniiformes	Tripterygiidae	Enneanectes carminalis	Jordan & Gilbert 1882
235	Blenniiformes	Tripterygiidae	Enneanectes reticulatus	Allen & Robertson 1991
236	Blenniiformes	Tripterygiidae	Helcogrammoides cunninghami	Smitt 1898
237	Carangiformes	Achiridae	Achirus klunzingeri	Steindachner 1880
238	Carangiformes	Achiridae	Achirus zebrinus	Clark 1936
239	Carangiformes	Bothidae	Bothus leopardinus	Günther 1862
240	Carangiformes	Bothidae	Perissias taeniopterus	Gilbert 1890
241	Carangiformes	Bothidae	Bothus constellatus	Jordan 1889
411	_			

	G :C	C :1	T 1	1055	
242	Carangiformes	Carangidae	Trachurus symmetricus Ayres 1855		
243	Carangiformes	Carangidae	Selene brevoortii	Gill 1863	
244	Carangiformes	Carangidae	Alectis ciliaris	Bloch 1787	
245	Carangiformes	Carangidae	Decapterus macarellus	Cuvier 1833	
246	Carangiformes	Carangidae	Gnathanodon speciosus	Forsskål 1775	
247	Carangiformes	Carangidae	Selar crumenophthalmus	Bloch 1793	
248	Carangiformes	Carangidae	Paraselene orstedii	Lütken 1880	
249	Carangiformes	Carangidae	Trachurus murphyi	Nichols 1920	
250	Carangiformes	Carangidae	Decapterus macrosoma	Bleeker 1851	
251	Carangiformes	Carangidae	Decapterus muroadsi	Temminck & Schlegel	
251	Carangiformes	Carangidae	Trachinotus paitensis	1844 Cuvier 1832	
252	Carangiformes	Carangidae	Trachinotus rhodopus	Gill 1863	
253	Carangiformes	Carangidae	Selene peruviana	Guichenot 1866	
254	Carangiformes	Carangidae	Euprepocaranx dorsalis	Gill 1863	
255	Carangiformes	Carangidae Coryphaenidae	Coryphaena hippurus	Linnaeus 1758	
256			7.2		
257	Carangiformes	Cyclopsettidae	Citharichthys stigmaeus	Jordan & Gilbert 1882	
258	Carangiformes	Cyclopsettidae	Citharichthys sordidus	Girard 1854	
259	Carangiformes	Cyclopsettidae	Citharichthys xanthostigma	Gilbert 1890	
260	Carangiformes	Cyclopsettidae	Citharichthys fragilis	Gilbert 1890	
261	Carangiformes	Cyclopsettidae	Syacium maculiferum	Garman 1899	
262	Carangiformes	Cyclopsettidae	Syacium ovale	Günther 1864	
263	Carangiformes	Cyclopsettidae	Citharichthys platophrys	Gilbert 1891	
264	Carangiformes	Cyclopsettidae	Syacium latifrons	Jordan & Gilbert 1882	
265	Carangiformes	Cyclopsettidae	Etropus peruvianus	Hildebrand 1946	
266	Carangiformes	Cynoglossidae	Symphurus atricauda	Jordan & Gilbert 1880	
267	Carangiformes	Cynoglossidae	Symphurus atramentatus	Jordan & Bollman 1890	
268	Carangiformes	Cynoglossidae	Symphurus fasciolaris	Gilbert 1892	
269	Carangiformes	Cynoglossidae	Symphurus gorgonae	Chabanaud 1948	
270	Carangiformes	Cynoglossidae	Symphurus oligomerus	Mahadeva & Munroe 1990	
271	Carangiformes	Cynoglossidae	Symphurus leei	Jordan & Bollman 1890	
272	Carangiformes	Nematistiidae	Nematistius pectoralis	Gill 1862	
273	Carangiformes	Paralichthyidae	Xystreurys liolepis	Jordan & Gilbert 1880	
274	Carangiformes	Paralichthyidae	Ancylopsetta dendritica	Gilbert 1890	
275	Carangiformes	Paralichthyidae	Hippoglossina stomata	Eigenmann & Eigenmann 1890	
276	Carangiformes	Paralichthyidae	Hippoglossina bollmani	Gilbert 1890	
277	Carangiformes	Paralichthyidae	Hippoglossina tetrophthalma	Gilbert 1890	
278	Carangiformes	Paralichthyidae	Paralichthys adspersus	Steindachner 1867	
279	Carangiformes	Paralichthyidae	Paralichthys microps	Günther 1881	
280	Carangiformes	Paralichthyidae	Hippoglossina macrops	Steindachner 1876	
200	_	1			

	C:G	Pleuronectidae	D	Girard 1854	
281	Carangiformes		Parophrys vetulus		
282	Carangiformes	Pleuronectidae	Psettichthys melanostictus	Girard 1854	
283	Carangiformes	Pleuronectidae	Pleuronichthys coenosus	Girard 1854	
284	Carangiformes	Pleuronectidae	Lepidopsetta bilineata	Ayres 1855	
285	Carangiformes	Pleuronectidae	Isopsetta isolepis	Lockington 1880	
286	Carangiformes	Pleuronectidae	Pleuronichthys decurrens	Jordan & Gilbert 1881	
287	Carangiformes	Pleuronectidae	Eopsetta jordani	Lockington 1879	
288	Carangiformes	Pleuronectidae	Pleuronichthys verticalis	Jordan & Gilbert 1880	
289	Carangiformes	Pleuronectidae	Pleuronichthys ritteri	Starks & Morris 1907	
290	Carangiformes	Pleuronectidae	Lyopsetta exilis	Jordan & Gilbert 1880	
291	Carangiformes	Pleuronectidae	Pleuronichthys ocellatus	Starks & Thompson 1910	
292	Carangiformes	Pleuronectidae	Limanda aspera	Pallas 1814	
293	Carangiformes	Pleuronectidae	Hippoglossus stenolepis	Schmidt 1904	
294	Carangiformes	Sphyraenidae	Sphyraena argentea	Girard 1854	
295	Carangiformes	Sphyraenidae	Sphyraena lucasana	Gill 1863	
296	Carangiformes	Sphyraenidae	Sphyraena idiastes	Heller & Snodgrass 1903	
297	Carcharhiniformes	Atelomycteridae	Schroederichthys bivius	Smith 1838	
298	Carcharhiniformes	Atelomycteridae	Schroederichthys chilensis	Guichenot 1848	
299	Carcharhiniformes	Carcharhinidae	Rhizoprionodon longurio	Jordan & Gilbert 1882	
300	Carcharhiniformes	Pentanchidae	Bythaelurus canescens	Günther 1878	
301	Carcharhiniformes	Triakidae	Triakis semifasciata	Girard 1855	
302	Carcharhiniformes	Triakidae	Mustelus henlei	Gill 1863	
303	Carcharhiniformes	Triakidae	Mustelus californicus	Gill 1864	
304	Carcharhiniformes	Triakidae	Mustelus lunulatus	Jordan & Gilbert 1882	
305	Carcharhiniformes	Triakidae	Galeorhinus galeus	Linnaeus 1758	
306	Centrarchiformes	Girellidae	Girella nigricans	Ayres 1860	
307	Centrarchiformes	Girellidae	Girella simplicidens	Osburn & Nichols 1916	
308	Centrarchiformes	Kyphosidae	Kyphosus elegans	Peters 1869	
309	Centrarchiformes	Kyphosidae	Kyphosus vaigiensis	Quoy & Gaimard 1825	
310	Centrarchiformes	Kyphosidae	Kyphosus ocyurus	Jordania y Gilbert 1882	
311	Centrarchiformes	Kyphosidae	Kyphosus azureus	Jenkins & Evermann 1889	
312	Centrarchiformes	Latridae	Chirodactylus variegatus	Valenciennes 1833	
313	Centrarchiformes	Scorpididae	Medialuna californiensis	Steindachner 1875	
314	Chimaeriformes	Callorhinchidae	Callorhinchus callorynchus	Linnaeus 1758	
315	Clupeiformes	Alosidae	Sardinops sagax	Jenyns 1842	
316	Clupeiformes	Clupeidae	Strangomera bentincki	Norman 1936	
317	Clupeiformes	Clupeidae	Sprattus fuegensis	Jenyns 1842	
318	Clupeiformes	Dorosomatidae	Opisthonema medirastre	Berry & Barrett 1963	
J10		<u> </u>	l	1	

210	Clupeiformes	Dorosomatidae	Lile nigrofasciata	Castro-Aguirre, Ruiz- Campos & Balart 2002	
319	Clupeiformes	Dorosomatidae	Opisthonema bulleri	Regan 1904	
320	Clupeiformes	Dussumieriidae	Etrumeus acuminatus	Gilbert 1890	
321	Clupeiformes	Engraulidae	Engraulis mordax	Girard 1854	
322	Clupeiformes	Engraulidae	Anchoa argentivittata	Regan 1904	
323	Clupeiformes	Engraulidae	Anchoa mundeoloides	Breder 1928	
324	Clupeiformes	Engraulidae	Anchoa helleri	Hubbs 1921	
325	Clupeiformes	Engraulidae	Anchoa scofieldi	Jordan & Culver 1895	
326	Clupeiformes	Engraulidae	Anchoa exigua	Jordan & Gilbert 1882	
327	Clupeiformes	Engraulidae	Engraulis ringens	Jenyns 1842	
328	Clupeiformes	Pristigasteridae	ŭ ŭ	Jordan & Gilbert 1882	
329	•	•	Pliosteostoma lutipinnis		
330	Gadiformes	Gadidae	Gadus macrocephalus	Tilesius 1810	
331	Gadiformes	Gadidae	Gadus chalcogrammus	Pallas 1814	
332	Gadiformes	Gadidae	Micromesistius australis	Norman 1937	
333	Gadiformes	Macrouridae	Coelorinchus aconcagua	Iwamoto 1978	
334	Gadiformes	Macrouridae	Coelorinchus fasciatus	Günther 1878	
335	Gadiformes	Macruronidae	Macruronus novaezelandiae	Hector 1871	
336	Gadiformes	Merlucciidae	Merluccius productus	Ayres 1855	
337	Gadiformes	Merlucciidae	Merluccius polylepis	Ginsburg 1954	
338	Gadiformes	Merlucciidae	Merluccius gayi	Guichenot 1848	
339	Gadiformes	Merlucciidae	Merluccius australis	Hutton 1872	
340	Gadiformes	Moridae	Salilota australis	Günther 1878	
	Gobiiformes	Apogonidae	Apogon atricaudus	Jordan & McGregor	
341	Gobiiformes	Apogonidae	Apogon retrosella	1898 Gill 1862	
342	Gobiiformes	Apogonidae	Apogon dovii	Günther 1862	
343	Gobiiformes	Apogonidae	Apogon vacificus	Herre 1935	
344					
345	Gobiiformes	Gobiidae	Rhinogobiops nicholsii	Bean 1882	
346	Gobiiformes Gobiiformes	Gobiidae Gobiidae	Aruma histrio	Jordan 1884	
347		Gobiidae	Barbulifer pantherinus	Pellegrin 1901	
348	Gobiiformes Gobiiformes	Gobiidae	Bathygobius ramosus Bollmannia ocellata	Ginsburg 1947 Gilbert 1892	
349	Gobiiformes	Gobiidae		Gilbert 1892 Gilbert 1892	
350	Gobiiformes	Gobiidae	Bollmannia macropoma Bollmannia stigmatura	Gilbert 1892 Gilbert 1892	
351	Gobiiformes	Gobiidae	Bollmannia stigmatura Bollmannia umbrosa	Ginsburg 1939	
352	Gobiiformes	Gobiidae	Chriolepis minutilla	Gilbert 1892	
353	Gobiiformes	Gobiidae	Chriolepis minutita Chriolepis zebra	Ginsburg 1938	
354	Gobiiformes	Gobiidae	Coryphopterus urospilus	Ginsburg 1938 Ginsburg 1938	
355	Gobiiformes	Gobiidae	Tigrigobius digueti	Pellegrin 1901	
356	Gobiiformes	Gobiidae	Elacatinus puncticulatus	Ginsburg 1938	
357	Goomormes	Goolidae	Etacatinus puncticutatus	Onisourg 1938	

358	Gobiiformes	Gobiidae	Gobulus crescentalis	Gilbert 1892	
359	Gobiiformes	Gobiidae	Lythrypnus dalli	Gilbert 1890	
360	Gobiiformes	Gobiidae	Lythrypnus pulchellus	Ginsburg 1938	
361	Gobiiformes	Gobiidae	Parrella maxillaris	Ginsburg 1938	
362	Gobiiformes	Gobiidae	Chriolepis semisquamata	Rutter 1904	
363	Gobiiformes	Gobiidae	Barbulifer mexicanus	Hoese & Larson 1985	
364	Gobiiformes	Gobiidae	Gobiosoma seminudum	Günther 1861	
365	Gobiiformes	Gobiidae	Bathygobius lineatus	Jenyns 1841	
366	Gobiiformes	Gobiidae	Gymneleotris seminuda	Günther 1864	
367	Gobiiformes	Oxudercidae	Lepidogobius lepidus	Girard 1858	
368	Gobiiformes	Oxudercidae	Ilypnus gilberti	Eigenmann & Eigenmann 1889	
369	Gobiiformes	Oxudercidae	Gobionellus liolepis	Meek & Hildebrand 1928	
370	Heterodontiformes	Heterodontidae	Heterodontus francisci	Girard 1855	
371	Heterodontiformes	Heterodontidae	Heterodontus mexicanus	Taylor & Castro-Aguirre 1972	
372	Labriformes	Ammodytidae	Ammodytes personatus	Girard 1856	
373	Labriformes	Labridae	Halichoeres californicus	Günther 1861	
374	Labriformes	Labridae	Halichoeres semicinctus	Ayres 1859	
375	Labriformes	Labridae	Bodianus pulcher	Ayres 1854	
376	Labriformes	Labridae	Scarus ghobban	Fabricius 1775	
377	Labriformes	Labridae	Bodianus diplotaenia	Gill 1862	
378	Labriformes	Labridae	Decodon melasma	Gomon 1974	
379	Labriformes	Labridae	Halichoeres chierchiae	Di Caporiacco 1948	
380	Labriformes	Labridae	Halichoeres dispilus	Günther 1864	
381	Labriformes	Labridae	Halichoeres nicholsi	Jordan & Gilbert 1882	
382	Labriformes	Labridae	Nicholsina denticulata	Evermann & Radcliffe 1917	
383	Labriformes	Labridae	Scarus compressus	Osburn & Nichols 1916	
384	Labriformes	Labridae	Thalassoma lucasanum	Gill 1862	
385	Labriformes	Labridae	Scarus rubroviolaceus	Bleeker 1847	
386	Labriformes	Labridae	Scarus perrico	Jordan & Gilbert 1882	
387	Labriformes	Labridae	Thalassoma grammaticum	Gilbert 1890	
388	Labriformes	Pinguipedidae	Pinguipes chilensis	Valenciennes 1833	
389	Labriformes	Uranoscopidae	Kathetostoma averruncus	Jordan & Bollman 1890	
390	Labriformes	Uranoscopidae	Astroscopus zephyreus	Gilbert & Starks 1897	
391	Lamniformes	Lamnidae	Isurus oxyrinchus	Rafinesque 1810	
392	Lophiiformes	Antennariidae	Fowlerichthys avalonis	Jordan & Starks 1907	
393	Lophiiformes	Lophiidae	Lophiodes caulinaris	Garman 1899	
394	Lophiiformes	Lophiidae	Lophiodes spilurus	Garman 1899	
395	Lophiiformes	Ogcocephalidae	Zalieutes elater	Jordan & Gilbert 1882	

396	Mugiliformes	Mugilidae Mugil thoburni		Jordan & Starks 1896	
397	Mugiliformes	Mugilidae	Mugil setosus	Valenciennes 1836	
398	Myctophiformes	Myctophidae	Stenobrachius leucopsarus	Eigenmann & Eigenmann 1890	
399	Myctophiformes	Myctophidae	Tarletonbeania crenularis	Jordan & Gilbert 1880	
400	Myctophiformes	Myctophidae	Lampanyctodes hectoris	Günther 1876	
401	Myliobatiformes	Dasyatidae	Hypanus dipterurus	Jordan & Gilbert 1880	
402	Myliobatiformes	Dasyatidae	Hypanus longus	Garman 1880	
403	Myliobatiformes	Dasyatidae	Pteroplatytrygon violacea	Bonaparte 1832	
404	Myliobatiformes	Mobulidae	Mobula munkiana	Notarbartolo-di-Sciara 1987	
405	Myliobatiformes	Myliobatidae	Myliobatis californica	Gill 1865	
406	Myliobatiformes	Myliobatidae	Myliobatis longirostris	Applegate & Fitch 1964	
407	Myliobatiformes	Potamotrygonidae	Styracura pacifica	Beebe & Tee-Van 1941	
408	Myliobatiformes	Rhinopteridae	Rhinoptera steindachneri	Evermann & Jenkins 1891	
409	Myliobatiformes	Urotrygonidae	Urobatis halleri	Cooper 1863	
410	Myliobatiformes	Urotrygonidae	Urobatis maculatus	Garman 1913	
411	Myliobatiformes	Urotrygonidae	Urobatis concentricus	Osburn & Nichols 1916	
412	Myliobatiformes	Urotrygonidae	Urotrygon chilensis	Günther 1872	
413	Myliobatiformes	Urotrygonidae	Urotrygon asterias	Jordan & Gilbert 1883	
414	Myliobatiformes	Urotrygonidae	Urotrygon rogersi	Jordan & Starks 1895	
415	Myliobatiformes	Urotrygonidae	Urotrygon aspidura	Jordan & Gilbert 1882	
416	Myliobatiformes	Urotrygonidae	Urotrygon munda	Gill 1863	
417	Myliobatiformes	Urotrygonidae	Urotrygon nana	Miyake & McEachran 1988	
418	Myliobatiformes	Urotrygonidae	Urotrygon peruanus	Hildebrand 1946	
419	Myxiniformes	Myxinidae	Eptatretus stoutii	Lockington 1878	
420	Ophidiiformes	Bythitidae	Brosmophycis marginata	Ayres 1854	
421	Ophidiiformes	Bythitidae	Grammonus diagrammus	Heller & Snodgrass 1903	
422	Ophidiiformes	Bythitidae	Petrotyx hopkinsi	Heller & Snodgrass 1903	
423	Ophidiiformes	Bythitidae	Cataetyx messieri	Günther 1878	
424	Ophidiiformes	Carapidae	Carapus dubius	Putnam 1874	
425	Ophidiiformes	Carapidae	Echiodon exsilium	Rosenblatt 1961	
426	Ophidiiformes	Dinematichthyidae	Ogilbia ventralis	Gill 1863	
427	Ophidiiformes	Ophidiidae	Chilara taylori	Girard 1858	
428	Ophidiiformes	Ophidiidae	Ophidion scrippsae	Hubbs 1916	
429	Ophidiiformes	Ophidiidae	Lepophidium pardale	Gilbert 1890	
430	Ophidiiformes	Ophidiidae	Lepophidium prorates	Jordan & Bollman 1890	
431	Ophidiiformes	Ophidiidae	Ophidion galeoides	Gilbert 1890	
432	Ophidiiformes	Ophidiidae	Ophidion iris	Breder 1936	
433	Ophidiiformes	Ophidiidae	Otophidium indefatigabile	Jordan & Bollman 1890	

434	Ophidiiformes	Ophidiidae	Ophidion fulvum	Hildebrand & Barton 1949	
435	Ophidiiformes	Ophidiidae	Genypterus blacodes	Forster 1801	
436	Ophidiiformes	Ophidiidae	Genypterus chilensis	Guichenot 1848	
437	Ophidiiformes	Ophidiidae	Genypterus maculatus	Tschudi 1846	
438	Orectolobiformes	Ginglymostomatidae	Ginglymostoma unami	Del Moral-Flores, Ramírez-Antonio, Angulo & Pérez-Ponce de León 2015	
439	Osmeriformes	Osmeridae	Allosmerus elongatus	Ayres 1854	
440	Osmeriformes	Osmeridae	Spirinchus starksi	Fisk 1913	
441	Osmeriformes	Osmeridae	Mallotus catervarius	Pennant 1784	
442	Perciformes	Agonidae	Pallasina aix	Starks 1896	
443	Perciformes	Agonidae	Hemilepidotus spinosus	Ayres 1854	
444	Perciformes	Agonidae	Chesnonia verrucosa	Lockington 1880	
445	Perciformes	Agonidae	Hemilepidotus hemilepidotus	Tilesius 1811	
446	Perciformes	Agonidae	Stellerina xyosterna	Jordan & Gilbert 1880	
447	Perciformes	Agonidae	Odontopyxis trispinosa	Lockington 1880	
448	Perciformes	Agonidae	Podothecus accipenserinus	Tilesius 1813	
449	Perciformes	Agonidae	Agonomalus mozinoi	Wilimovsky & Wilson 1979	
450	Perciformes	Agonidae	Agonopsis chiloensis	Jenyns 1840	
451	Perciformes	Agonidae	Agonopsis sterletus	Gilbert 1898	
452	Perciformes	Anarhichadidae	Anarrhichthys ocellatus	Ayres 1855	
453	Perciformes	Anarhichadidae	Anarhichas orientalis	Pallas 1814	
454	Perciformes	Anoplopomatidae	Anoplopoma fimbria	Pallas 1814	
455	Perciformes	Anthiadidae	Hemanthias peruanus	Steindachner 1875	
456	Perciformes	Aulorhynchidae	Aulorhynchus flavidus	Gill 1861	
457	Perciformes	Bathymasteridae	Ronquilus jordani	Gilbert 1889	
458	Perciformes	Bovichtidae	Cottoperca gobio	Günther 1861	
459	Perciformes	Bovichtidae	Bovichtus chilensis	Regan 1913	
460	Perciformes	Cebidichthyidae	Cebidichthys violaceus	Girard 1854	
461	Perciformes	Channichthyidae	Champsocephalus esox	Günther 1861	
462	Perciformes	Congiopodidae	Congiopodus peruvianus	Cuvier 1829	
463	Perciformes	Eleginopidae	Eleginops maclovinus	Cuvier 1830	
464	Perciformes	Epinephelidae	Epinephelus quinquefasciatus	Bocourt 1868	
465	Perciformes	Epinephelidae	Epinephelus analogus	Gill 1863	
466	Perciformes	Epinephelidae	Alphestes immaculatus	Breder 1936	
467	Perciformes	Epinephelidae	Cephalopholis panamensis	Steindachner 1876	
468	Perciformes	Epinephelidae	Hyporthodus acanthistius	Gilbert 1892	
469	Perciformes	Epinephelidae	Epinephelus labriformis	Jenyns 1840	
470	Perciformes	Epinephelidae	Hyporthodus niphobles	Gilbert & Starks 1897	

471	Perciformes	Epinephelidae	Mycteroperca prionura	Rosenblatt & Zahuranec 1967	
472	Perciformes	Epinephelidae	Mycteroperca rosacea	Streets 1877	
473	Perciformes	Epinephelidae	Alphestes multiguttatus	Günther 1864	
474	Perciformes	Epinephelidae	Dermatolepis dermatolepis	Boulenger 1895	
475	Perciformes	Epinephelidae	Hyporthodus exsul	Fowler 1944	
476	Perciformes	Epinephelidae	Cephalopholis colonus	Valenciennes 1846	
477	Perciformes	Epinephelidae	Mycteroperca jordani	Jenkins & Evermann 1889	
478	Perciformes	Grammistidae	Rypticus bicolor	Valenciennes 1846	
479	Perciformes	Grammistidae	Rypticus nigripinnis	Gill 1861	
480	Perciformes	Harpagiferidae	Harpagifer bispinis	Forster 1801	
481	Perciformes	Hexagrammidae	Ophiodon elongatus	Girard 1854	
482	Perciformes	Hexagrammidae	Hexagrammos decagrammus	Pallas 1810	
483	Perciformes	Hexagrammidae	Oxylebius pictus	Gill 1862	
484	Perciformes	Jordaniidae	Scorpaenichthys marmoratus	Ayres 1854	
485	Perciformes	Liparidae	Liparis florae	Jordan & Starks 1895	
486	Perciformes	Liparidae	Liparis fucensis	Gilbert 1896	
487	Perciformes	Liparidae	Liparis rutteri	Gilbert & Snyder 1898	
488	Perciformes	Liparidae	Liparis mucosus	Ayres 1855	
489	Perciformes	Liparidae	Liparis pulchellus	Ayres 1855	
490	Perciformes	Liparidae	Careproctus pallidus	Vaillant 1888	
491	Perciformes	Lumpenidae	Lumpenus sagitta	Wilimovsky 1956	
492	Perciformes	Lumpenidae	Lumpenus fabricii	Reinhardt 1836	
493	Perciformes	Normanichthyidae	Normanichthys crockeri	Clark 1937	
494	Perciformes	Nototheniidae	Notothenia angustata	Hutton 1875	
495	Perciformes	Nototheniidae	Patagonotothen brevicauda	Lönnberg 1905	
496	Perciformes	Nototheniidae	Patagonotothen longipes	Steindachner 1875	
497	Perciformes	Nototheniidae	Patagonotothen sima	Richardson 1845	
498	Perciformes	Nototheniidae	Patagonotothen tessellata	Richardson 1845	
499	Perciformes	Pholidae	Pholis ornata	Girard 1854	
500	Perciformes	Pholidae	Pholis laeta	Cope 1873	
501	Perciformes	Pholidae	Apodichthys flavidus	Girard 1854	
502	Perciformes	Pholidae	Pholis schultzi	Schultz 1931	
503	Perciformes	Pholidae	Apodichthys fucorum	Jordan & Gilbert 1880	
504	Perciformes	Psychrolutidae	Enophrys bison	Girard 1854	
505	Perciformes	Psychrolutidae	Artedius harringtoni	Starks 1896	
506	Perciformes	Psychrolutidae	Ascelichthys rhodorus	Jordan & Gilbert 1880	
507	Perciformes	Psychrolutidae	Clinocottus globiceps	Girard 1858	
508	Perciformes	Psychrolutidae	Artedius lateralis	Girard 1854	
509	Perciformes	Psychrolutidae	Clinocottus embryum	Jordan & Starks 1895	

510	Perciformes	Psychrolutidae	Clinocottus recalvus	Greeley 1899	
511	Perciformes	Psychrolutidae	Oligocottus maculosus	Girard 1856	
512	Perciformes	Psychrolutidae	Oligocottus snyderi	Greeley 1898	
513	Perciformes	Psychrolutidae	Artedius fenestralis	Jordan & Gilbert 1883	
514	Perciformes	Psychrolutidae	Artedius notospilotus	Girard 1856	
515	Perciformes	Psychrolutidae	Clinocottus analis	Girard 1858	
516	Perciformes	Psychrolutidae	Myoxocephalus polyacanthocephalus	Pallas 1814	
517	Perciformes	Psychrolutidae	Gymnocanthus galeatus	Bean 1881	
518	Perciformes	Psychrolutidae	Icelinus borealis	Gilbert 1896	
519	Perciformes	Psychrolutidae	Chitonotus pugetensis	Steindachner 1876	
520	Perciformes	Psychrolutidae	Gymnocanthus tricuspis	Reinhardt 1830	
521	Perciformes	Scorpaenidae	Sebastes melanops	Girard 1856	
522	Perciformes	Scorpaenidae	Sebastes alutus	Gilbert 1890	
523	Perciformes	Scorpaenidae	Sebastes miniatus	Jordan & Gilbert 1880	
524	Perciformes	Scorpaenidae	Sebastes caurinus	Richardson 1844	
525	Perciformes	Scorpaenidae	Sebastes paucispinis	Ayres 1854	
526	Perciformes	Scorpaenidae	Sebastes auriculatus	Girard 1854	
527	Perciformes	Scorpaenidae	Sebastes pinniger	Gill 1864	
528	Perciformes	Scorpaenidae	Sebastes nebulosus	Ayres 1854	
529	Perciformes	Scorpaenidae	Sebastes carnatus	Jordan & Gilbert 1880	
530	Perciformes	Scorpaenidae	Sebastes rastrelliger	Jordan & Gilbert 1880	
531	Perciformes	Scorpaenidae	Sebastes maliger	Jordan & Gilbert 1881	
532	Perciformes	Scorpaenidae	Sebastes flavidus	Ayres 1862	
533	Perciformes	Scorpaenidae	Sebastes dallii	Eigenmann & Beeson 1894	
534	Perciformes	Scorpaenidae	Sebastes serranoides	Eigenmann & Eigenmann 1890	
535	Perciformes	Scorpaenidae	Sebastes mystinus	Jordan & Gilbert 1881	
536	Perciformes	Scorpaenidae	Sebastes atrovirens	Jordan & Gilbert 1880	
537	Perciformes	Scorpaenidae	Scorpaena guttata	Girard 1854	
538	Perciformes	Scorpaenidae	Scorpaena russula	Jordan & Bollman 1890	
539	Perciformes	Scorpaenidae	Scorpaena sonorae	Jenkins & Evermann 1889	
540	Perciformes	Scorpaenidae	Scorpaenodes xyris	Jordan & Gilbert 1882	
541	Perciformes	Scorpaenidae	Sebastes oculatus	Valenciennes 1833	
542	Perciformes	Scorpaenidae	Sebastes nigrocinctus	Ayres 1859	
543	Perciformes	Scorpaenidae	Helicolenus lengerichi	Norman 1937	
544	Perciformes	Scorpaenidae	Sebastes constellatus	Jordan & Gilbert 1880	
545	Perciformes	Scorpaenidae	Scorpaena mystes	Jordan & Starks 1895	
546	Perciformes	Serranidae	Paralabrax clathratus	Girard 1854	
547	Perciformes	Serranidae	Paralabrax nebulifer	Girard 1854	
				·	

548	Perciformes	Serranidae	Paralabrax maculatofasciatus	Steindachner 1868	
549	Perciformes	Serranidae	Diplectrum macropoma	Günther 1864	
550	Perciformes	Serranidae	Diplectrum rostrum	Bortone 1974	
551	Perciformes	Serranidae	Diplectrum pacificum	Meek & Hildebrand 1925	
552	Perciformes	Serranidae	Diplectrum euryplectrum	Jordan & Bollman 1890	
553	Perciformes	Serranidae	Diplectrum sciurus	Gilbert 1892	
554	Perciformes	Serranidae	Serranus aequidens	Gilbert 1890	
555	Perciformes	Serranidae	Diplectrum maximum	Hildebrand 1946	
556	Perciformes	Serranidae	Paralabrax auroguttatus	Walford 1936	
557	Perciformes	Serranidae	Serranus psittacinus	Valenciennes 1846	
558	Perciformes	Serranidae	Diplectrum labarum	Rosenblatt & Johnson 1974	
559	Perciformes	Stichaeidae	Anoplarchus purpurescens	Gill 1861	
560	Perciformes	Stichaeidae	Anoplarchus insignis	Gilbert & Burke 1912	
561	Perciformes	Stichaeidae	Xiphister mucosus	Girard 1858	
562	Perciformes	Stichaeidae	Stichaeus punctatus	Fabricius 1780	
563	Perciformes	Trichodontidae	Trichodon trichodon	Tilesius 1813	
564	Perciformes	Triglidae	Prionotus ruscarius	Gilbert & Starks 1904	
565	Perciformes	Triglidae	Bellator gymnostethus	Gilbert 1892	
566	Perciformes	Triglidae	Bellator loxias	Jordan 1897	
567	Perciformes	Triglidae	Prionotus albirostris	Jordan & Bollman 1890	
568	Perciformes	Triglidae	Bellator xenisma	Jordan & Bollman 1890	
569	Perciformes	Triglidae	Prionotus birostratus	Richardson 1844	
570	Perciformes	Triglidae	Prionotus horrens	Richardson 1844	
571	Perciformes	Zoarcidae	Austrolycus depressiceps	Regan 1913	
572	Perciformes	Zoarcidae	Iluocoetes facali	Lloris & Rucabado 1987	
573	Perciformes	Zoarcidae	Ophthalmolycus macrops	Günther 1880	
574	Rajiformes	Rajidae	Beringraja binoculata	Girard 1855	
575	Rajiformes	Rajidae	Caliraja rhina	Jordan & Gilbert 1880	
576	Rajiformes	Rajidae	Caliraja cortezensis	McEachran & Miyake 1988	
577	Rajiformes	Rajidae	Rostroraja equatorialis	Jordan & Bollman 1890	
578	Rajiformes	Rajidae	Rostroraja velezi	Chirichigno F. 1973	
579	Rhinopristiformes	Rhinobatidae	Pseudobatos leucorhynchus	Günther 1867	
580	Rhinopristiformes	Rhinobatidae	Pseudobatos glaucostigma	Jordan & Gilbert 1883	
581	Rhinopristiformes	Rhinobatidae	Pseudobatos planiceps	Garman 1880	
582	Rhinopristiformes	Trygonorrhinidae	Zapteryx exasperata	Jordan & Gilbert 1880	
583	Scombriformes	Bramidae	Brama japonica	Hilgendorf 1878	
584	Scombriformes	Centrolophidae	Icichthys lockingtoni	Jordan & Gilbert 1880	
585	Scombriformes	Centrolophidae	Seriolella porosa	Guichenot 1848	

586	Scombriformes	Gempylidae	Leionura atun	Euphrasen 1791	
587	Scombriformes	Nomeidae	Cubiceps pauciradiatus	Günther 1872	
588	Scombriformes	Nomeidae	Nomeus gronovii	Gmelin 1789	
589	Scombriformes	Scombridae	Scomber japonicus	Houttuyn 1782	
590	Scombriformes	Scombridae	Sarda chiliensis	Cuvier 1832	
591	Scombriformes	Scombridae	Scomberomorus sierra	Jordan & Starks 1895	
592	Scombriformes	Scombridae	Euthynnus lineatus	Kishinouye 1920	
593	Scombriformes	Scombridae	Auxis brachydorax	Collette & Aadland 1996	
594	Scombriformes	Scombridae	Katsuwonus pelamis	Linnaeus 1758	
595	Scombriformes	Scombridae	Thunnus albacares	Bonnaterre 1788	
596	Scombriformes	Scombridae	Thunnus obesus	Lowe 1839	
597	Scombriformes	Scombridae	Auxis eudorax	Risso 1810	
598	Scombriformes	Stromateidae	Peprilus simillimus	Ayres 1860	
599	Scombriformes	Stromateidae	Peprilus medius	Peters 1869	
600	Scombriformes	Stromateidae	Peprilus snyderi	Gilbert & Starks 1904	
601	Scombriformes	Stromateidae	Peprilus ovatus	Horn 1970	
602	Scombriformes	Stromateidae	Stromateus stellatus	Cuvier 1829	
603	Scombriformes	Trichiuridae	Trichiurus nitens	Garman 1899	
604	Siluriformes	Ariidae	Occidentarius platypogon	Günther 1864	
605	Siluriformes	Ariidae	Galeichthys peruvianus	Lütken 1874	
606	Squaliformes	Squalidae	Squalus suckleyi	Linnaeus 1758	
607	Squatiniformes	Squatinidae	Squatina californica	Ayres 1859	
608	Stomiiformes	Gonostomatidae	Cyclothone acclinidens	Garman 1899	
609	Stomiiformes	Sternoptychidae	Maurolicus parvipinnis	Vaillant 1888	
610	Syngnathiformes	Callionymidae	Synchiropus atrilabiatus	Garman 1899	
611	Syngnathiformes	Fistulariidae	Fistularia commersonii	Rüppell 1838	
612	Syngnathiformes	Fistulariidae	Fistularia corneta	Gilbert & Starks 1904	
613	Syngnathiformes	Mullidae	Pseudupeneus grandisquamis	Gill 1863	
614	Syngnathiformes	Mullidae	Mulloidichthys dentatus	Gill 1862	
615	Syngnathiformes	Syngnathidae	Syngnathus californiensis	Storer 1845	
616	Syngnathiformes	Syngnathidae	Cosmocampus arctus	Jenkins & Evermann 1889	
617	Syngnathiformes	Syngnathidae	Hippocampus ingens	Girard 1858	
618	Syngnathiformes	Syngnathidae	Syngnathus carinatus	Gilbert 1892	
619	Tetraodontiformes	Balistidae	Balistes polylepis	Steindachner 1876	
620	Tetraodontiformes	Balistidae	Sufflamen verres	Gilbert & Starks 1904	
621	Tetraodontiformes	Diodontidae	Chilomycterus reticulatus	Linnaeus 1758	
622	Tetraodontiformes	Diodontidae	Diodon holocanthus	Linnaeus 1758	
623	Tetraodontiformes	Monacanthidae	Aluterus scriptus	Osbeck 1765	
624	Tetraodontiformes	Tetraodontidae	Sphoeroides lispus	Walker 1996	
UZT		L		1	

625	Tetraodontiformes	Tetraodontidae	Arothron meleagris	Anonymous 1798	
626	Tetraodontiformes	Tetraodontidae	Canthigaster punctatissima	Günther 1870	
627	Tetraodontiformes	Tetraodontidae	Sphoeroides angusticeps	Jenyns 1842	
628	Tetraodontiformes	Tetraodontidae	Sphoeroides sechurae	Hildebrand 1946	
629	Tetraodontiformes	Tetraodontidae	Guentheridia formosa	Günther 1870	
	Tetraodontiformes	Tetraodontidae	Sphoeroides kendalli	Meek & Hildebrand	
630				1928	
631	Tetraodontiformes	Tetraodontidae	Sphoeroides trichocephalus	Cope 1870	
632	Torpediniformes	Narcinidae	Diplobatis ommata	Jordan & Gilbert 1890	
633	Torpediniformes	Narcinidae	Narcine vermiculata	Breder 1928	
634	Torpediniformes	Platyrhinidae	Platyrhinoidis triseriata	Jordan & Gilbert 1880	
635	Torpediniformes	Torpedinidae	Tetronarce californica	Ayres 1855	

Tabla 11. Localidades estuarinas del Pacífico Polar-Ártico Oriental (Grupo I).

	ID	Ecorregión	Localidad	Estado	País	Latitud	Longitud
	1	Chukchi Sea	Point Barrow	Alaska	EUA	71.381527	-156.453528
	2	Chukchi Sea	Wainwright	Alaska	EUA	70.6333	-160.0333
	3	Chukchi Sea	Point Lay	Alaska	EUA	69.744095	-163.040714
G	4	Chukchi Sea	Point Hope	Alaska	EUA	68.361528	-166.670177
R	5	Chukchi Sea	Kotlik Lagoon	Alaska	EUA	67.385024	-163.8175
U	6	Chukchi Sea	Krusenstern Lagoon	Alaska	EUA	67.141734	-163.602878
P	7	Chukchi Sea	Aukulak Lagoon	Alaska	EUA	67.0667	-163.25
O	8	Chukchi Sea	kotzebue	Alaska	EUA	66.898333	-162.596667
-	9	EBS	Port Clarence	Alaska	EUA	65.262222	-166.845833
I	10	EBS	Safety Sound	Alaska	EUA	64.484	-164.7702
	11	EBS	Norton Sound	Alaska	EUA	64.156606	-161.403992
	12	EBS	Delta River Yukon	Alaska	EUA	63.073071	-164.592139
	13	EBS	Kuskokwim Bay	Alaska	EUA	60.037417	-162.36969

Tabla 12. Localidades estuarinas del Pacífico Frio-Cálido Nororiental (Grupo II).

	ID	Ecorregión	Localidad	Estado	País	Latitud	Longitud
	14	GA	Kachemak Bay	Alaska	EUA	59.609167	-151.3475
	15	NAPF	Glacier Bay	Alaska	EUA	58.760833	-136.348611
	16	OWVCS	Fraser River	Vancouver	Canadá	49.1	-123.166667
	17	OWVCS	Grays Harbor	Washington	EUA	46.950645	-124.051005
G	18	OWVCS	Willampa Bay	Washington	EUA	46.733984	-124.078226
R	19	OWVCS	Columbia River	Washington	EUA	46.244267	-124.05793
U	20	OWVCS	Nehalem Bay	Oregón	EUA	45.66507	-123.930373
P	21	OWVCS	Tillamook Bay	Oregón	EUA	45.512054	-123.947851
O	22	OWVCS	Netarts Bay	Oregón	EUA	45.403826	-123.95062
TT	23	OWVCS	Siletz Bay	Oregón	EUA	44.913692	-124.024289
II	24	OWVCS	Yaquina Bay	Oregón	EUA	44.619233	-124.029213
	25	OWVCS	Alsea Bay	Oregón	EUA	44.4333	-124.05
	26	OWVCS	Coos Bay	Oregón	EUA	43.368945	-124.309694
	27	OWVCS	Lake Earl	Oregón	EUA	41.827456	-124.189033
	28	NC	Humboldt Bay	California	EUA	40.753641	-124.211077

	20	NG	T 1 D	G 1:C :	TILLA	20.162405	122 00 (711
	29	NC	Tomales Bay	California	EUA	38.163495	-122.906711
	30	NC	Estero Drakes	California	EUA	38.051662	-122.940638
	31	NC	Bolinas Bay	California	EUA	37.913704	-122.670923
	32	NC	San Francisco	California	EUA	37.806625	-122.361297
			Bay				
	33	NC	Elkhorn Slough	California	EUA	36.821872	-121.744768
	34	NC	Morro Bay	California	EUA	35.340629	-120.85198
G	35	SCB	Santa Mónica	California	EUA	34.102638	-119.104879
R			Lagoon				
U P O	36	SCB	Alamitos Bay	California	EUA	33.74974	-118.11812
	37	SCB	Anaheim Bay	California	EUA	33.731963	-118.084131
	38	SCB	Newport Bay	California	EUA	33.608678	-117.904857
	39	SCB	Mission Bay	California	EUA	32.774765	-117.229038
	40	SCB	San Diego Bay	California	EUA	32.672069	-117.142536
	41	SCB	Punta Banda	Baja	México	31.739768	-116.630306
				California			
				Norte			
	42	SCB	San Quintín	Baja	México	30.455249	-115.942353
				California			
				Norte			

Tabla 13. Localidades estuarinas del Pacífico Oriental Tropical (Grupo III).

	ID	Ecorregión	Localidad	Estado	País	Latitud	Longitud
	43	SCB	Laguna Ojo de Liebre	Baja California Sur	México	27.72729	-114.1744
	44	TM	Laguna San Ignacio	Baja California Sur	México	26.848742	-113.188088
	45	TM	Bahía Magdalena	Baja California Sur	México	24.66265	-112.025829
G	46	Cortezian	Bahía La Paz	Baja California Sur	México	24.141867	-110.378779
R U P	47	Cortezian	Bahía Concepción	Baja California Sur	México	26.706083	-111.838364
O	48	Cortezian	Laguna El Sargento	Sonora	México	29.324768	-112.332796
	49	Cortezian	Laguna Santa Cruz	Sonora	México	28.782885	-111.883045
III	50	Cortezian	Estero El Soldado	Sonora	México	27.965682	-110.977488
	51	Cortezian	Laguna Las Guásimas	Sonora	México	27.856624	-110.584396
	52	Cortezian	Laguna Los Algodones	Sonora	México	26.733754	-109.010682
	53	Cortezian	Bahía Lobos	Sonora	México	27.351134	-110.522187
	54	Cortezian	Laguna Huizache Caimanero	Sinaloa	México	22.880167	-106.070858
	55	Cortezian	Laguna Teacapan Agua Brava	Sinaloa	México	22.166667	-105.533333
	56	Cortezian	Estero El Custodio	Sinaloa	México	21.347529	-105.244282
	57	MTP	Laguna Agua Dulce El Ermitaño	Jalisco	México	19.975869	-105.469039
	58	MTP	Laguna Barra de Navidad	Jalisco	México	19.189727	-104.667771

						1	1
	59	MTP	Laguna Cuyutlán	Colima	México	18.996506	-104.179675
	60	MTP	Laguna Salinas del Padre	Michoacán	México	18.549165	-103.624572
	61	MTP	Barra de Nexpa	Michoacán	México	18.088717	-102.791889
	62	MTP	Laguna Teolan	Michoacán	México	18.071949	-102.731196
	63	MTP	Laguna Mexcalhuacan	Michoacán	México	18.054404	-102.657334
	64	MTP	Barra de Pichi	Michoacán	México	17.975118	-102.325892
	65	MTP	Laguna El Potosí	Guerrero	México	17.532535	-101.422532
	66	MTP	Laguna Mitla	Guerrero	México	17.04889	-100.337206
	67	MTP	Laguna Coyuca	Guerrero	México	16.945945	-100.011766
	68	MTP	Laguna Tres Palos	Guerrero	México	16.75878	-99.70668
	69	MTP	Laguna Chautengo	Guerrero	México	16.619736	-99.096089
	70	MTP	Laguna Corralero Alotengo	Oaxaca	México	16.208133	-98.120562
	71	MTP	Laguna Chacahua Pastoría	Oaxaca	México	15.986881	-97.686827
	72	C-N	Laguna Superior Inferior	Oaxaca	México	16.319342	-94.897495
	73	C-N	Huave	Oaxaca	México	16.190314	-94.265959
	74	C-N	Laguna Mar Muerto	Chiapas	México	16.162706	-94.168369
	75	C-N	Laguna La Joya Buenavista	Chiapas	México	15.853943	-93.630694
G R U P O	76	C-N	Laguna Los Patos Solo Dios	Chiapas	México	15.646713	-93.398751
	77	C-N	Laguna Carretas Pereyra	Chiapas	México	15.513129	-93.206228
	78	C-N	Laguna Chantuto Panzacola	Chiapas	México	15.173133	-92.848331
	79	C-N	Manchón-Guamuchal	Dpto. San Marcos y Retalhuleu	Guatemala	14.431804	-92.086465
	80	C-N	Tulate	Dpto. Retalhuleu	Guatemala	14.156103	-91.713738
	81	C-N	Tecojate	Dpto. Escuintla	Guatemala	13.975413	-91.364291
	82	C-N	Sipacate-Naranjo	Dpto. Escuintla	Guatemala	13.918879	-91.096624
	83	C-N	Las lisas		Guatemala	13.796416	-90.249989
	84	C-N	Bahía de Jiquilisco	Dpto. Usuluán	El salvador	13.205723	-88.505055
	85	C-N	Estero Padre Ramos	Chinandega	Nicaragua	12.770898	-87.476521
	86	C-N	Estero Salinas Grandes	León	Nicaragua	12.27052	-86.878275
	87	Nicoya	Estero Tamarindo	Prov. Guanacaste	Costa Rica	10.313223	-85.834062
	88	Nicoya	Nicoya	Prov. Puntarenas	Costa Rica	10.079097	-85.072387
	89	Nicoya	Estero Damas Palo Seco	Prov. Puntarenas	Costa Rica	9.465407	-84.227873
	90	Nicoya	Estero Zancudo	Prov. Puntarenas	Costa Rica	8.537532	-83.143972
	91	PB	Bahía de Málaga	Dpto. Valle de Cauca	Colombia	3.985618	-77.306176

	92	PB	Bahía de Buenaventura	Dpto. Valle	Colombia	3.854284	-77.120976
				de Cauca			
	93	PB	Bahía de Sanquianga	Dpto.	Colombia	2.568975	-78.28768
G				Nariño			
R	94	Guayaquil	Chone	Prov.	Ecuador	-0.636551	-80.39337
U				Manabi			
P	95	Guayaquil	El Palmar	Prov.	Ecuador	-2.544994	-79.872292
O				Guayas			
	96	Guayaquil	Tumbes	Dpto.	Perú	-3.412612	-80.296878
III				Tumbes			
	97	Perú	Estero Virrila	Dpto.	Perú	-5.788996	-80.86425
		Central		Piura			

Tabla 14. Localidades estuarinas del Pacífico Frio-Cálido Sudoriental (Grupo IV).

	ID	Ecorregión	Localidad	Estado	País	Latitud	Longitud
	98	Humboldtian	Laguna Grande	Dpto. Ica	Perú	-14.150832	-76.252033
G	99	Araucanian	Bahía de Corral	Los ríos	Chile	-39.884176	-73.407104
R	100	Chiloense	Reloncavi	Los Lagos	Chile	-41.786602	-72.875032
U	101	Chiloense	Canal Aysén	Aysén del	Chile	-45.390783	-73.586994
P				General Carlos			
O				Ibáñez del Campo			
	102	CFSC	Katalalixar	Magallanes	Chile	-48.146224	-74.738298
VI	103	CFSC	Bernardo O	Magallanes	Chile	-49.875293	-74.379425
			Higgins				
	104	CFSC	Alacalufes	Magallanes	Chile	-52.610403	-73.69185