

Universidad de Ciencias y Artes de Chiapas Instituto de Investigación e Innovación en Energías Renovables.

Análisis de segunda ley de la termodinámica de un colector solar de aire y validación experimental del modelo matemático utilizado para su optimización y caracterización térmica no estacionaria.

TESIS

Que para obtener el grado de Doctor en Materiales y Sistemas Energéticos Renovables

> P R E S E N T A Gustavo Eliseo Espinosa García

> > Director:

Dr. Guillermo Rogelio Ibáñez Duharte

Enero 2024, Tuxtla Gutiérrez, Chiapas

UNIVERSIDAD DE CIENCIAS Y ARTES DE CHIAPAS SECRETARÍA ACADÉMICA DIRECCIÓN DE INVESTIGACIÓN Y POSGRADO

Tuxtla Gutiérrez, Chiapas a 01 de febrero de 2024 Oficio No. SA/DIP/0069/2024 Asunto: Autorización de Impresión de Tesis

C. Gustavo Eliseo Espinosa García CVU: 814436 Candidato al Grado de Doctor en Materiales y Sistemas Energéticos Renovables Instituto de Investigación e Innovación en Energías Renovables UNICACH Presente

Con fundamento en la opinión favorable emitida por escrito por la Comisión Revisora que analizó el trabajo terminal presentado por usted, denominado Análisis de segunda ley de la termodinámica de un colector solar de aire y validación experimental del modelo matemático utilizado para su optimización y caracterización térmica no estacionaria cuyo Director de tesis es el Dr. Guillermo Rogelio Ibáñez Duharte (CVU 215574) quien avala el cumplimiento de los criterios metodológicos y de contenido; esta Dirección a mi cargo autoriza la impresión del documento en cita, para la defensa oral del mismo, en el examen que habrá de sustentar para obtener el Grado de Doctor en Materiales y Sistemas Energéticos Renovables.

Es imprescindible observar las características normativas que debe guardar el documento impreso, así como realizar la entrega en esta Dirección de un ejemplar empastado.

Atentamente "Por la Cultura de mi Raza" Dra. Carolina Orantes García Directora

Dr. Héber Vilchis Bravo, Encargado de la Dirección, Instituto de Investigación e Innovación en Energías Renovables UNICACH. C.c.p. Para su conocimiento.

Dra. Laura Elena Verea Valladares, Coordinadora de Posgrado, Instituto de Investigación e Innovación en Energías Renovables, UNICACH. Para su conocimiento. Archivo/minutario.

RJAG/COG/igb/gtr

2024 Año de Felipe Carrillo Puerto BENEMÉRITO DEL PROLETARIADO. REVOLUCIONARIO Y DEFENSOR DEL MAYAB.

Dirección de Investigación y Posgrado Libramiento Norte Poniente 1550 C.P. 29039 Tuxtla Gutiérrez, Chiapas, México Teléfono: (961) 61 70440 Ext: 4360 investigacionyposgrado@unicach.mx

DEDICATORIA

Este trabajo va dedicado:

A mi esposa Paulina Nandayapa Rodas, mi hija Sofía Elízabeth Espinosa Nandayapa y mi hijo Eliseo Espinosa Nandayapa que son mi motivación. Gracias por su apoyo, cariño y amor en los momentos difíciles y, su comprensión y paciencia por el tiempo requerido para lograr este trabajo. A mis padres, Gustavo Adolfo Espinosa Corzo y Celia García Ruiz que siempre han estado presentes en las dificultades.

AGRADECIMIENTOS.

Agradezco principalmente al Dr. Guillermo Ibáñez Duharte, asesor en esta tesis y guía en el desarrollo de este trabajo mediante sus conocimientos y asesorías. Fue el que marcó el camino para lograr este proyecto.

Expreso mi gratitud al CONACYT, por la beca otorgada para realizar mis estudios de doctorado y apoyar de esta forma la investigación.

INDICE GENERAL

I
DEDICATORIAI
AGRADECIMIENTOSI
INDICE GENERALII
RESUMENV
NOMENCLATURAS
SUBÍNDICES
LISTA DE FIGURAS
LISTA DE TABLASVIII
LISTA DE ECUACIONES IX
CAPITULO 1: GENERALIDADES
1.1 Introducción
1.2 Revisión bibliográfica
1.3 Planteamiento del problema
1.4 Objetivos
1.5 Organización de la tesis
1.6 Conclusión9
1.7 Bibliografía
CAPITULO 2: FUNDAMENTOS TEÓRICOS 11
2.1 Introducción
2.2 Ajuste de datos
2.3 Análisis de incertidumbre
2.4 La segunda ley de la termodinámica (Çengel , 2011) 12
2.5 Exergía: una medida del potencial de trabajo
2.6 Destrucción exergética
2.7 Optimización multidimensional
2.8 Conclusión
2.9 Bibliografía
CAPÍTULO 3: ANÁLISIS TEÓRICO Y EXPERIMENTAL
3.1 Introducción
3.2 Modelación matemática del comportamiento térmico no estacionario del colector solar de aire (CSA) de placa plana y análisis exergético
3.2.1 Descripción del sistema modelado y consideraciones
3.2.2 Ecuaciones de balance de energía
3.2.2.1 Cubierta superior
3.2.2.2 Placa absorbedora

3.2.2.	3 Fluido de trabajo	20
3.2.2.	4 Aislante	21
3.2.2.	5 Placa base	21
3.2.2.	6 Marco lateral	21
3.2.3	Propiedades físicas de la sustancia de trabajo y coeficientes de transferencia de calor	22
3.2.3.	1 Propiedades físicas del aire en función de la temperatura	22
3.2.3.	2 Coeficientes de transferencia de calor entre los diferentes componentes	22
3.2.4	Ecuaciones del análisis exergético	31
3.2.4.	1 Exergía de entrada:	31
3.2.4.	2 Exergía útil o de salida	35
3.2.4.	3 Eficiencia exergética y entropía	35
3.2.4.	4 Descripción elemental de la función maximizada	36
3.3 Proce	dimiento de solución numérica del modelo matemático	38
3.4 Pro	totipo experimental de CSA	39
3.4.1	Diagrama esquemático y fotos del prototipo construido	39
3.4.2	Diseño de experimento y colección de datos. Incertidumbre en las mediciones	47
3.5 Desci	ripción de la técnica de optimización de algoritmo genético	51
3.6 Dif	erentes configuraciones consideradas de la placa absorbedora del CSA	53
3.7 Conc	lusiones	70
3.8 Bibli	ografía	70
(s.f.)		70
CAPITULO	4: RESULTADOS Y ANÁLISIS	73
4.1 Introd	łucción	73
4.2 Valid	ación experimental del modelo matemático	73
4.2.1	Comparación estadística entre resultados teóricos calculados y experimentales	73
4.3 Ana 79	álisis paramétrico o de sensibilidad utilizando los resultados numéricos obtenidos con el m	odelo
4.3.1	Efecto de la variación del material de la cubierta superior en la eficiencia exergética	80
4.3.2	Efecto de la variación del material de la placa absorbedora en la eficiencia exergética	82
4.3.3	Efecto de la variación del material del aislante en la eficiencia exergética	84
4.3.4	Efecto de la variación del material de la placa base en la eficiencia exergética	86
4.3.5	Efecto de la variación del material del marco lateral en la eficiencia exergética	87
4.3.6	Efecto de la variación del espesor de cubierta superior en la eficiencia exergética	88
4.3.7	Efecto de la variación del espesor de la placa absorbedora en la eficiencia exergética	89
4.3.8	Efecto de la variación del espesor del aislante en la eficiencia exergética	90
4.3.9	Efecto de la variación del espesor de la placa base en la eficiencia exergética	91
4.3.10	Efecto de la variación del espesor del marco lateral en la eficiencia exergética	92

4 e	.3.11 ficienc	Efecto de la variación de la distancia entre placa absorbedora y cubierta superior en ia exergética	n la . 93
4	.3.12	Efecto de la variación de la longitud del colector en la eficiencia exergética	. 94
4	.3.13	Efecto de la variación del ancho del colector en la eficiencia exergética	. 95
4 e	.3.14 xergéti	Efecto de la variación de la distancia entre el aislante y la placa absorbedora en la eficier ica	ncia . 95
4.4 efici	Efect encia c	o de diferentes combinaciones de parámetros geométricos y tipos de materiales usados es de segunda ley	n la . 96
4.5	Efect	o del caudal másico	. 97
4.6	Efect	o de la variación de la configuración de la placa absorbedora	. 97
4.7 0	Optimiz	zación de algoritmo genético	106
4.8	Conc	lusiones	108
4.9	Biblio	ografía	109

RESUMEN

Los colectores solares tienen un bajo rendimiento térmico y es necesario mejorar su eficiencia. El objetivo en este trabajo fue encontrar las condiciones de operación con las mínimas pérdidas de energía útil mediante la selección de parámetros óptimos de diseño. Para ello, se desarrolló un modelo matemático no estacionario basado en seis ecuaciones diferenciales acopladas a partir de los balances de energía de seis componentes del colector. Las ecuaciones se resolvieron numéricamente utilizando el método de Runtge-Kutta-Fehlberg con un código iterativo en MATLAB. En el procedimiento de solución, el calentador solar se dividió en elementos de volumen diferencial de longitud Δx y se determinó el tamaño de paso de tiempo óptimo en cada paso de integración. Los resultados numéricos se validaron con datos experimentales de un prototipo construido y se obtuvo una buena concordancia con un error menor al 4% en todos los casos. Los resultados revelaron que la eficiencia exergética mejoró hasta 1.1 veces cuando el espesor del absorbedor disminuyó de 0.001 a 0.0005 m, mientras que el valor más alto de eficiencia aumentó 3 veces cuando el espesor del marco lateral varió de 0.015 a 0.035 m. Asimismo, para un caudal másico de 0.0017 kg/s, la exergía útil y la temperatura de salida alcanzaron sus valores máximos de 6.7 W y 58 °C, respectivamente. Además, se utilizó la técnica del algoritmo genético para obtener un conjunto óptimo de parámetros geométricos del calentador con la máxima ganancia de exergía. Se encontró un área de calefacción óptima de 1.72 m2. Se definieron tres modelos para cuantificar los efectos de diferentes combinaciones de parámetros geométricos y materiales. Se encontró que el modelo III mejoró el valor más alto de eficiencia exergética en 6 y 4 % en comparación con los modelos I y II con un valor constante máximo de 7 % entre 10 y 16 horas. Finalmente, se realizó un análisis comparando la eficiencia exergética proporcionada para diversas configuraciones de la placa absorbedora y determinar así cual configuración nos proporciona el mejor rendimiento en estado transitorio.

NOMENCLATURAS

<i>A</i> :	Área del calentador	m^2
<i>C</i> :	Calor específico a presión constante	$I k q^{-1} \circ C^{-1}$
D_h :	Diámetro hidráulico	m
E:	Exergía	W
E_d :	Destrucción de Exergía	W
f:	Factor de fricción	
<i>g</i> :	Aceleración gravitacional	$m s^{-2}$
G_T :	Intensidad de la radiación solar	Wm^{-2}
h_r :	Transferencia de calor por radiación	Wm^{-2} ° C^{-1}
h_c :	Transferencia de calor por convección	$Wm^{-2}\circ C^{-1}$
<i>K</i> :	Coeficiente de extinción	m^{-1}
k:	Conductividad térmica	Wm^{-1} ° C^{-1}
L:	Longitud del canal	m
<i>ṁ</i> :	Flujo másico	kgs^{-1}
<i>m</i> :	Masa	kg
<i>n</i> :	Índice de refracción	0
Nu:	Número de Nusselt	
Q:	Transferencia de calor por conducción	$Wm^{-2}\circ C^{-1}$
<i>R</i> :	Constante particular del aire	Jkg^{-1} °C $^{-1}$
Ra:	Número de Rayleigh	-
Re:	Número de Reynolds	
S _{gen} :	Generación de entropía	$W^{\circ}C^{-1}$
t:	Tiempo	S
T:	Temperatura	°C
<i>U</i> :	Coeficiente total de pérdida de calor	Wm^{-2} ° C^{-1}
V:	Volumen	m^3
V_w :	Velocidad del aire	Wm^{-2} ° C^{-1}
<i>W</i> :	Ancho del canal	m
α:	Absortancia	
α_T :	Difusividad térmica	$m^2 s^{-1}$
β:	Ángulo de inclinación de la superficie desde la horizontal	
β_v :	Coeficiente de expansión volumétrica	K^{-1}
δ:	Espesor	m
<i>E</i> :	Emitancia	
η_{II} :	Eficiencia de segunda ley	
θ_1 :	Ángulo de incidencia de la radiación solar	
θ_2 :	Ángulo de refracción del material de la cubierta	
μ:	Viscosidad dinámica	$kg \ m \ s^{-1}$
ν:	Viscosidad cinemática	$m^2 s^{-1}$
ho:	Densidad	$kg m^{-3}$
σ :	Constante de Stefan Boltzmann	$W m^{-2} K^{-4}$
τ:	Transmitancia	

 $\tau_{cs,a}$: Transmitancia de cubierta considerando solo pérdidas por absorción

SUBÍNDICES

i, ent:	In, Entrada
e, sal:	Exit, Salida
CS:	Cubierta superior
pa:	Placa absorbedora
<i>a</i> :	Ambiente
ft:	Fluido de trabajo
ai:	Aislante
ml:	Marco lateral
pb:	Placa base

LISTA DE FIGURAS

FIGURA 1 MAPAS DE IRRADIACIÓN EN MÉXICO	2
FIGURA 2 CLASIFICACIÓN DE CSA	3
FIGURA 3 CLASIFICACIÓN DE LAS TECNOLOGÍAS	3
FIGURA 4 TRANSFERENCIAS DE CALOR EN LOS ELEMENTOS DEL COLECTOR	18
FIGURA 5 TRANSFERENCIAS DE CALOR EN LOS ELEMENTOS DEL COLECTOR	19
FIGURA 13 COLECTOR DE PLACAS PLANAS TERMINADO	44
FIGURA 14 ORIENTACIÓN Y CUIDADO	45
FIGURA 15 MODELO DE COLECTOR DE PLACAS PLANAS CON CUBIERTA	45
FIGURA 16 COLECTOR DE PLACAS PLANAS TERMINADO	47
FIGURA 17 MODELO DE COLECTOR E INSTRUMENTOS	48
FIGURA 18 COLECTOR E INSTRUMENTOS INSTALADOS	49
FIGURA 19 DATOS ALMACENADOS EN REGISTRADOR	50
FIGURA 20 SONDAS PARA TEMPERATURAS	50
FIGURA 21 INSTRUMENTOS PARA ADQUISICIÓN DE DATOS	51
FIGURA 22 DIAGRAMA DE FLUJO DE AG	52
FIGURA 23 POBLACIÓN AG	53
FIGURA 24 CONFIGURACIÓN 1: PROTUBERANCIAS	54
FIGURA 30 CONFIGURACIÓN 7: PLACA CON HOYUELOS	58
FIGURA 31 CONFIGURACIÓN 8: EN FORMA DE ARCO MÚLTIPLE	59
FIGURA 32 CONFIGURACIÓN 9: ARCOS ROTOS	60
FIGURA 33 CONFIGURACIÓN 10: GENERADOR DE VÓRTICE DE ALETA RECTANGULAR Y	
TRAPEZOIDAL	60
FIGURA 34 CONFIGURACIÓN 11: PROTUBERANCIAS CÓNICAS	61
FIGURA 35 CONFIGURACIÓN 12: EN FORMA DE S MÚLTIPLE	62
FIGURA 36 CONFIGURACIÓN 13: FORMA DE CUARTO DE CÍRCULO	62
FIGURA 37 CONFIGURACIÓN 14: SECCIONES RECTANGULARES	63
FIGURA 40 CONFIGURACIÓN 17: NERVADURAS CIRCULARES	65
FIGURA 41 CONFIGURACIÓN 18: PERFILES DE CURVAS CÓNICAS	65
FIGURA 42 CONFIGURACIÓN 19: PERFIL INVERSO NACA 0040	66
FIGURA 43 CONFIGURACIÓN 20: PERFIL INVERSO DISCRETO NACA 0040	66
FIGURA 44 CONFIGURACIÓN 21: NERVADURAS DISCRETAS EN V HACIA ABAJO	67
FIGURA 45 CONFIGURACIÓN 22: GRANOS EN EL METAL	68

FIGURA 56 EFICIENCIA EXERGÉTICA PARA DIFERENTES MATERIALES DE LA CS
FIGURA 57 VARIACIÓN INDIVIDUAL DE PROPIEDADES DE VIDRIO ORDINARIO (CALOR ESPECIFICO,
COEFICIENTE DE EXTINCIÓN, CONDUCTIVIDAD TÉRMICA, DENSIDAD, EMISIVIDAD, ÍNDICE
DE REFRACCIÓN)
FIGURA 58 EFICIENCIA EXERGÉTICA PARA DIFERENTES MATERIALES DE LA PA
FIGURA 59 VARIACIÓN INDIVIDUAL DE PROPIEDADES DE LÁMINA LISA (ABSORTIVIDAD, CALOR
ESPECIFICO, CONDUCTIVIDAD, DENSIDAD, EMISIVIDAD)
FIGURA 61 VARIACIÓN INDIVIDUAL DE PROPIEDADES DE POLIESTIRENO (CALOR ESPECIFICO
CONDUCTIVIDAD TÉRMICA DENSIDAD EMISIVIDAD) 86
FIGURA 62 FEICIENCIA EXERGÉTICA PARA DIFERENTES MATERIALES DE LA PR
FIGURA 62 VARIACIÓN INDIVIDUAL DE PROPIEDADES DE MADERA (CALOR ESPECIFICO
CONDUCTIVIDAD TÉRMICA DENSIDAD)
EICLIDA 64 EEICIENCIA EVEDCÉTICA DADA DIEEDENTES MATEDIALES DE LA MI
FIGURA 04 EFICIENCIA EAEROETICA PARA DIFERENTES MATERIALES DE LA ML
FIGURA 05 VARIACIÓN INDIVIDUAL DE PROPIEDADES DE MADERA (ADSORTIVIDAD, CALOR
ESPECIFICO, CONDUCTIVIDAD TERMICA, DENSIDAD)
FIGURA 66 VARIACIÓN DE LA EPICIENCIA EXERGETICA EN EL TIEMPO AL VARIAR ESPESOR DE CS89
FIGURA 67 VARIACION DE LA EFICIENCIA EXERGETICA EN EL TIEMPO AL VARIAR ESPESOR DE PA
FIGURA 68 VARIACION DE EFICIENCIA EXERGETICA EN EL TIEMPO PARA DIFERENTES ESPESORES
DE AI
FIGURA 69 VARIACION DE EFICIENCIA EXERGETICA EN EL TIEMPO PARA DIFERENTES ESPESORES
DE PB
FIGURA 70 VARIACIÓN DE EFICIENCIA EXERGÉTICA EN EL TIEMPO AL VARIAR ESPESOR DE ML93
FIGURA 71 VARIACIÓN DE LA EFICIENCIA EXERGÈTICA EN EL TIEMPO VARIANDO LA DISTANCIA
ENTRE PA Y CS
FIGURA 72 VARIACIÓN DE LA EFICIENCIA EXERGÉTICA EN EL TIEMPO PARA DIFERENTES
LONGITUDES DEL COLECTOR
FIGURA 73 VARIACIÓN DE LA EFICIENCIA EXERGÉTICA EN EL TIEMPO PARA DIFERENTES
ANCHURAS DEL COLECTOR95
FIGURA 74 VARIACIÓN DE LA EFICIENCIA EXERGÉTICA EN EL TIEMPO PARA DIFERENTES
DISTANCIAS ENTRE AI Y PA96
FIGURA 75 COMPARACIÓN ENTRE MODELOS
FIGURA 76 VARIACIÓN DEL FLUJO MÁSICO
FIGURA 77 COMPARACIÓN DE EFICIENCIA EXERGÉTICA PARA DIFERENTES CONFIGURACIONES
CON UN VALOR DE 0.003 PARA EL FLUJO MÁSICO
FIGURA 78 COMPARACIÓN DE EFICIENCIA EXERGÉTICA PARA DIFERENTES CONFIGURACIONES
CON UN VALOR DE 0.00775 PARA EL FLUJO MÁSICO100
FIGURA 79 COMPARACIÓN DE EFICIENCIA EXERGÉTICA PARA DIFERENTES CONFIGURACIONES
CON UN VALOR DE 0.0125 PARA EL FLUJO MÁSICO101
FIGURA 80 COMPARACIÓN DE EFICIENCIA EXERGÉTICA PARA DIFERENTES CONFIGURACIONES
CON UN VALOR DE 0.01725 PARA EL FLUJO MÁSICO
FIGURA 81 COMPARACIÓN DE EFICIENCIA EXERGÉTICA PARA DIFERENTES CONFIGURACIONES
CON LIN VALOR DE 0.022 PARA EL EL LIO MÁSICO

LISTA DE TABLAS

TABLA 1 MATERIALES PARA CONSTRUCCIÓN	40
TABLA 2 MATERIALES Y DIMENSIONES DEL COLECTOR	40
TABLA 3 DATOS DEL COLECTOR	46
TABLA 4 PARÁMETROS GEOMÉTRICOS DE DISEÑO	47

TABLA 5 PROPIEDADES DE LOS MATERIALES	
TABLA 6 INSTRUMENTOS PARA MEDICIÓN	
TABLA 7 UBICACIÓN DE TERMOPARES Y SONDAS	50
TABLA 8 DATOS DE LA CUBIERTA SUPERIOR	73
TABLA 9 DATOS DE LA PA	74
TABLA 10 DATOS AI	76
TABLA 11 DATOS FLUJO DE SALIDA	77
TABLA 12 DATOS PB	77
TABLA 13 DATOS ML	
TABLA 14 PARÁMETROS GEOMÉTRICOS DE DISEÑO	80
TABLA 15 PROPIEDADES DE LOS MATERIALES	80
TABLA 16 CONDICIONES DE OPERACIÓN	80
TABLA 17 MATERIALES PARA CS	
TABLA 18 MATERIALES PARA PA	
TABLA 19 MATERIALES PARA AI, PB Y ML	
TABLA 20 MATERIALES PARA VARIACIÓN DE GEOMETRÍAS	
TABLA 21 DATOS DEL COLECTOR PARA EVALUAR RUGOSIDADES	
TABLA 22 VALOR MÁXIMO DE EFICIENCIA EXERGÉTICA ALCANZADO PARA CADA	
CONFIGURACIÓN	
TABLA 23 VALOR MÁXIMO DE EFICIENCIA EXERGÉTICA ALCANZADO PARA CADA	
CONFIGURACIÓN CON UN FLUJO MÁSICO DE 0.00775	
TABLA 24 VALOR MÁXIMO DE EFICIENCIA EXERGÉTICA ALCANZADO PARA CADA	
CONFIGURACIÓN CON FLUJO MÁSICO DE 0.0125	
TABLA 25 VALOR MÁXIMO DE EFICIENCIA EXERGÉTICA ALCANZADO PARA CADA	
CONFIGURACIÓN CON FLUJO MÁSICO DE 0.01725	
TABLA 26 VALOR MÁXIMO DE EFICIENCIA EXERGÉTICA ALCANZADO PARA CADA	
CONFIGURACIÓN CON FLUJO MÁSICO DE 0.022	
TABLA 27 TENDENCIA DE CADA CORRELACIÓN AL INCREMENTAR EL FLUJO MÁSICO	
TABLA 28 DATOS OBTENIDOS PARA DIFERENTES VALORES DE FLUJO MÁSICO	
TABLA 29 RANGO DE VALORES DE VARIABLES	
TABLA 30 RESULTADOS ÓPTIMOS	

LISTA DE ECUACIONES

{ 1 } ERROR PORCENTUAL RELATIVO MEDIO	
{ 2 } CHI-CUADRADO REDUCIDO	
{ 3 } ERROR CUADRÁTICO MEDIO	
{ 4 } RESULTADO R DE EXPERIMENTO	
{ 5 } INCERTIDUMBRE	
6 } EFICIENCIA SEGUNDA LEY	
{ 7 } EXERGÍA POR CALOR	
{ 8 } ANIQUILACIÓN EXERGÉTICA	
{ 9 } ANIQUILACIÓN EXERGÉTICA	
{ 10 } GRADIENTE DE FUNCIÓN ESCALAR	
{ 11 } BALANCE DE ENERGÍA	
{ 12 } BALANCE DE ENERGÍA	
{ 13 } ECUACIÓN DE BALANCE	
{ 14 } BALANCE CUBIERTA SUPERIOR	
{ 15 } BALANCE CS	

ł	16 } BALANCE PLACA ABSORBEDORA	20
l Į	17 } BALANCE PA	20
l Į	18 BALANCE FLUIDO DE TRABAIO	20
l J	$19 \ BALANCE FLUIDO DE TRABAJO$.20
l J	20 \ BALANCE DE AISI AMIENTO	.21
ן ר	21) BALANCE AL	.21
ן נ	21) BALANCE AL. 22) BALANCE PLACA BASE	. 21
٦ ۲	22 J DALANCE I LACA DASE	. 21
í ſ	23 } BALANCE FB	. 21
í ſ	24 } BALANCE MARCO LATERAL	. 21
۱ ۲	25 } DALANCE ML	. 22
۱ ۲	20 } CALUR ESPECIFICO AIRE	. 22
۱ ۲	27 } CONDUCTIVIDAD TERMICA AIRE	. 22
í ſ	20 J DENSIDAD DEL AIRE	. 22
í r	29 } DENSIDAD DEL AIRE	. 22
۲ ۱	30 } CALUR ABSORBIDU CS	. 22
۲ ۱	51 } KADIACION ABSOKBIDA CS	. 23
۲ ۱	52 } ABSURTIVIDAD CS	. 23
{	33 } IRANSMITANCIA CS	.23
{	34 } IRAYECTORIA REAL DE LA RADIACIÓN	.23
{	35 } LEY DE SNELL	.23
{	36 } ANGULO DE INCIDENCIA	.23
{	37 } ANGULO CENITAL	.23
{	38 { CONVECCION ENTRE PAY CS	.23
{	39 } RADIACIÓN ENTRE PA Y CS	.23
{	40 { CONVECCION Y RADIACION PA-CS	. 24
{	41 } COEFICIENTE CONVECCION PA-CS	.24
{	42 } TEMPERATURA MEDIA PA-CS	. 24
{	43 } NUMERO DE NUSSELT	.24
{	44 } NUMERO DE RAYLEIGH	.24
{	45 } COEFICIENTE RADIACION PA-CS	.24
{	46 } TRANSFERENCIA DE CALOR CS-AMB	. 25
{	47 } COEFICIENTE DE TRANSFERENCIA DE CALOR GENERAL	. 25
{	48 } CONVECCION CS-AMB	. 25
{	49 } TEMPERATURA MEDIA CS-AMB	. 25
{	50 } LONGITUD CARACTERISTICA	. 25
{	51 } NUSSELT CS-AMB	. 25
{	52 } RADIACION CS-AMB	. 25
{	53 } CALOR ABSORBIDO PA	.26
{	54 } RADIACION ABSORBIDA PA	. 26
{	55 } TRANSFERENCIA ENTRE PA-FT	.26
{	56 } COEFICIENTE CONVECCION PA-FT	. 26
{	57 } NUSSELT FLUJO LAMINAR	. 26
{	58 } NUSSELT FLUJO TURBULENTO	.26
{	59 } NUMERO DE REYNOLDS	.26
{	60 } TEMPERATURA MEDIA PA-FT	.26
{	61 } DIAMETRO HIDRÁULICO DUCTO	.27
{	62 } FLUJO MÁSICO	.27
{	63 } REYNOLDS FLUJO MÁSICO	. 27
{	64 } TRANSFERENCIA PA-AI	. 27

{	65 } RADIACIÓN PA-AI	27
{	66 } TRANSFERENCIA POR CONDUCCIÓN	27
{	67 } ÁREA DE CONTACTO PA-ML	27
{	68 } LONGITUD PA	27
{	69 } ANCHO PA	27
{	70 } CONVECCIÓN FT-AI	28
{	71 } TEMPERATURA MEDIA FT-AI	28
{	72 } ENERGÍA DEL FLUIDO	28
{	73 } TEMPERATURA DEL FLUIDO	28
{	74 } TRANSFERENCIA POR CONDUCCIÓN AI-PB	28
{	75 } ÁREA DE CONTACTO AI-PB	29
{	76 } LONGITUD AISLANTE	29
{	77 } ANCHO AISLANTE	29
{	78 CONDUCCIÓN AI-ML.	29
{	79 } ÁREA DE CONTACTO AI-ML	29
{	80 } TRANSFERENCIA PB-AMB	29
{	81 } COEFICIENTE GLOBAL PB	29
{	82 } CONDUCCIÓN PB-ML	30
{	83 } ÁREA DE CONTACTO PB-ML	30
{	84 } LONGITUD PB	30
{	85 } CALOR ABSORBIDO ML	30
{	86 } TRANSFERENCIA ML-AMB	30
{	87 } COEFICIENTE DE PÉRDIDA LATERAL	30
{	88 } PERDIDA LATERAL AMBIENTE	31
{	89 } ALTURA FRONTAL ML	31
{	90 } ALTURA LATERAL ML	31
{	91 } ÁREA ML	31
{	92 } ÁREA DEL COLECTOR	31
{	93 } ÁREA EXPUESTA A RADIACIÓN ML	31
{	94 } EXERGÍA DE ENTRADA	31
{	95 } DESTRUCCIÓN EXERGÉTICA CS-SOL	32
{	96 } DESTRUCCIÓN EXERGÉTICA PA-CS	32
{	97 } DESTRUCCIÓN EXERGÉTICA PA-SOL	32
{	98 } DESTRUCCIÓN EXERGÉTICA PA-FT	32
{	99 } DEST EXER PA-AI	32
{	100 } DEST EXER PA-ML	33
{	101 } DEST EXER FT-AI	33
{	102 } DEST EXER AI-PB	33
{	103 } DEST EXER AI-ML	33
{	104 } DEST EXER PB-ML	33
{	105 } DEST EXER POR FRICCIÓN	33
{	106 } CAÍDA DE PRESIÓN	34
{	107 } VELOCIDAD DEL FLUIDO	34
{	108 } DIÁMETRO HIDRÁULICO	34
{	109 } FLUJO MÁSICO	34
{	110 } FACTOR DE FRICCIÓN FLUJO LAMINAR	34
{	111 } FF PARA FLUJO TURBULENTO	34
{	112 } EXERGÍA PERDIDA CS-AMB	34
{	113 } EXERGÍA PERDIDA PB-AMB	34

{	114 } EXERGÍA PERDIDA ML-AMB	35
{	115 } EXER PERD OPT-PA	35
{	116 } EXER PERD OPT-CS	35
{	117 } EFICIENCIA ÓPTICA	35
{	118 } EXERGÍA APROVECHADA	35
{	119 } EFI EXER EN TÉRMINOS DE EXERGÍA APROVECHADA	
{	120 } EFI EXER EN TÉRMINOS DE EXERGÍA APROVECHADA	
{	121 } EFICIENCIA EXERGÉTICA	36
({	122 } DOMINIO DE F	36
ן ו	122 } DOMINIO DE F	36
ן ו	124 } DOMINIO DE F	36
ן ו	125 } DOMINIO DE F	37
l Į	126 } DOMINIO DE F. TCS	
l Į	120 J DOMINIO DE L. TES	
ו ג	127) DOMINIO DE L TET	
ו ג	120 J DOMINIO DE F	37
ן ו	129 $\}$ DOMINIO DE F. TPB	37
ן ו	130 } DOMINIO DE F - TMI	37
ן ו	131 f DOMINIO DE f - IML.	
۱ ۲	132) DOMINIO DE $f1$	0C
ן ו	133 DOMINIO DE $f1$	50 20
ן ו	134 } DOMINIO DE F	50 20
ן נ	135 f DOMINIO DE f	50
í ſ	130 } DOMINIO DE $f1$	0C
۱ ۲	137 } DOMINIO DE J 1	50 E /
۱ ۲	130) EACTOR EDICCIÓN CONEIC 1	54 54
۱ ۲	139) TACTOR FRICCION CONTROL 1	54 54
۱ ۲	140 } NO CONFIG 2 FERFORADOS	54
í r	141 } FF CONFIG 2 PERFORADOS	55
í ſ	142 } NO CONFIG 2 NO PERFO	55
í r	145 } FF CONFIG 2 NO FERFO	55
í r	144 } NU CONFIGS DWERP1	55
í r	145 } FF CONFIG3 DWERP1	55
í r	140 } NU CONFIGS DWERP2	50
í r	147 } FF CUNFIUS DWERF2	50
í r	140 } NU CONFICE DWARP1	50
í r	149 } FF CUNFIU3 DWARP1	50
۱ ۲	150 } NU CONFIGS DWARP2	50
۱ ۲	151 } FF CONFIG5 DWAKP2	50
{	152 } NU CONFIG4	56
۱ ۲	155 } FF CUNFIG4	5/
{ 1	134 } NU CONFICE 155) EE CONEICE	5/
{	155 } FF CUNFIGS	5/
{	150 } NU CONFIGE	58
{	15/ } FF CUNFIG0	58
{	158 } NU CONFIG/	58
{	109 } FF CUNFIG/	59
{	100 } NU CONFIG8	59
{	161 } FF CUNFIG8	59
ł	162 } NU CONFIG9	60

163 } FF CONFIG9	60
164 } NU CONFIG10 RWVG	61
165 } FF CONFIG10 RWVG	61
166 } NU CONFIG10 TWVG	61
167 } FF CONFIG10 TWVG	61
168 } NU CONFIG10 P-RWVG	61
169 } FF CONFIG10 P-RWVG	61
170 } NU CONFIG10 P-TWVG	61
171 } FF CONFIG10 P-TWVG	61
172 } NU CONFIG11	62
173 } FF CONFIG11	62
174 } NU CONFIG12	62
175 } FF CONFIG12	62
176 } NU CONFIG13	63
177 } FF CONFIG13	63
178 } NU CONFIG14	63
179 } NU CONFIG14 VALOR DE A	63
180 } FF CONFIG14	63
181 } FF CONFIG14 VALOR DE B	63
182 } NU CONFIG15	64
183 } FF CONFIG15	64
184 } NU CONFIG16	65
185 } FF CONFIG16	65
186 } NU CONFIG17	65
187 } FF CONFIG17	65
188 } NU CONFIG18	65
189 } FF CONFIG18	65
190 } NU CONFIG19	66
191 } FF CONFIG19	66
192 } NU CONFIG20	66
193 } FF CONFIG20	67
194 } NU CONFIG21	67
195 } FF CONFIG21	67
196 } NU CONFIG22	68
197 } FF CONFIG22	68
198 } NU CONFIG23	68
199 } FF CONFIG23	68
200 } NU CONFIG24	69
201 } FF CONFIG24	69
202 } NU CONFIG25	69
203 } FF CONFIG25	69
204 } NU CONFIG26	70
205 } FF CONFIG26	70
206 } RMSE	73
207 } COEFICIENTE PARA CORRELACIONES NU	98
208 } CAÍDA DE PRESIÓN PARA FF	98
	163 JFF CONFIG10 RWVG 164 NU CONFIG10 RWVG 165 JFF CONFIG10 TWVG 167 JFF CONFIG10 TWVG 168 NU CONFIG10 P-RWVG 169 JU CONFIG10 P-RWVG 170 NU CONFIG10 P-TWVG 171 JFF CONFIG10 P-TWVG 172 JNU CONFIG10 P-TWVG 173 JFF CONFIG10 P-TWVG 174 NU CONFIG10 P-TWVG 175 JFF CONFIG11 176 NU CONFIG11 177 JFC CONFIG12 178 NU CONFIG13 179 NU CONFIG14 179 NU CONFIG14 179 NU CONFIG14 179 NU CONFIG14 180 JFF CONFIG14 181 JFF CONFIG15 182 NU CONFIG15 183 JFF CONFIG16 184 NU CONFIG16 185 JFF CONFIG17 186 NU CONFIG18 187 JF CONFIG18 188 NU CONFIG19 191 JF CONFIG21 192 NU CONFIG21

CAPITULO 1: GENERALIDADES

1.1 Introducción.

Actualmente, las energías renovables se han establecido en todo el mundo como una importante fuente de energía. Su rápido crecimiento, particularmente en el sector eléctrico, es impulsado por diversos factores, incluyendo el aumento de la rentabilidad de las tecnologías renovables; iniciativas de política aplicada; un mejor acceso al financiamiento; seguridad energética y cuestiones de medio ambiente; demanda creciente de energía en economías en desarrollo y emergentes; y la necesidad de acceso a una energía modernizada. En consecuencia, en los países en desarrollo están surgiendo mercados nuevos, tanto para la energía renovable centralizada como para la distribuida (Sawin, 2016).

Las energías renovables modernas abastecen aproximadamente el 8% de la energía final en servicios de climatización en edificios e industria de todo el mundo, una gran mayoría es suministrada por la energía de biomasa, y en menor escala contribuyen la energía solar térmica y la geotérmica. Sin embargo, aproximadamente tres cuartas partes del consumo mundial de energía para calor sigue siendo sustentada por los combustibles fósiles. Aunque la capacidad total y la generación de las tecnologías renovables de calentamiento y enfriamiento continuaron al alza, el 2015 presenció un declive mundial en las tasas de crecimiento, debido a los bajos costos del petróleo en todo el mundo (Sawin, 2016).

México cuenta con un enorme potencial en recursos renovables, y gracias a las reformas implementadas en el sector energético, se han eliminado barreras que impedían el desarrollo de proyectos y tecnologías (SENER, 2017). En mapas proporcionados por el servicio en línea del grupo Solargis podemos observar el potencial que tiene México, tanto en la irradiación global horizontal como en la irradiación directa normal, para explotar tecnologías como los colectores solares.

Figura 1 Mapas de Irradiación en México

Un colector solar es un tipo especial de intercambiador de calor que transforma la energía radiante solar en calor y difiere en varios aspectos de los intercambiadores de calor más convencionales. Este último normalmente realiza un intercambio de fluido a fluido con altas velocidades de transferencia de calor y con la radiación como un factor sin importancia. En el colector solar, la transferencia de energía es de una fuente lejana de energía radiante a un fluido (Duffie & Beckman, 2013).

Según el medio de transferencia de calor que fluye a través del colector, los colectores solares se dividen en dos tipos: Colector solar de líquido (CSL) y Colector solar de aire (CSA) (Espinosa García & Ibañez Duharte, 2019). Los CSA se clasifican de acuerdo al número de cubiertas, los materiales absorbentes, la forma de la superficie absorbente, tipos de flujo, colectores híbridos y sus aplicaciones. Una clasificación de los CSA es mostrada en la figura 2, donde cada grupo es dividido en un subgrupo (Chabanea, Moummia, Brima, & Benramache, 2013).

Figura 2 Clasificación de CSA

También, la tecnología utilizada en la captación de la energía solar térmica de forma activa se puede clasificar, en función del margen de temperatura que se requiera, en tecnologías de: baja temperatura (T < 90 °C), media temperatura (90 °C < T < 400 °C) y alta temperatura (T > 400 °C). En la figura 1.3 se puede observar la clasificación y el tipo de colector para cada margen de temperatura (Deniz Alta, Caglayan, Atmaca, & Ertekin, 2015).

Figura 3 Clasificación de las tecnologías

Los colectores planos se pueden diseñar para aplicaciones que requieren suministro de energía a temperaturas moderadas, hasta 100°C por encima de la temperatura ambiente. Utilizan radiación solar y radiación difusa, no requieren seguimiento del sol y requieren poco

mantenimiento. Son mecánicamente más simples que los colectores de concentración (Duffie & Beckman, 2013).

1.2 Revisión bibliográfica.

En (Espinosa García & Ibañez Duharte, 2019) se presenta un modelo para la predicción de la distribución de temperatura en la cubierta superior, placa absorbedora, marco lateral, fluido de trabajo, placa aislante y placa base de un colector solar de placas planas. Este modelo opera bajo condiciones transitorias obteniendo el balance de energía para cada elemento del colector y se resuelve numéricamente implementando el método de Runge Kutta Fehlberg, a través del software Matlab. Los resultados obtenidos de dicha caracterización térmica son utilizados en el análisis exergético del colector y se obtiene la eficiencia exergética o de segunda ley de la termodinámica con base en la exergía de entrada y las destrucciones exergéticas involucradas en el colector.

(Chabanea, Moummia, Brima, & Benramache, 2013) presentan un análisis experimental de eficiencia térmica para un novedoso calentador de aire solar de placa plana con varios caudales másicos. Los parámetros medidos fueron las temperaturas de entrada y salida, las temperaturas de la placa absorbente, la temperatura ambiente y la radiación solar. Además, las mediciones se realizan a diferentes valores de caudal másico de aire en el conducto del canal de flujo, con un ángulo de inclinación igual a 45 ° en la ubicación de la ciudad de Biskra, Argelia. La eficiencia térmica correspondiente a las tasas de flujo másico fue 28.63, 39.69, 46.98, 55.70 y 63.61%, respectivamente.

En (Deniz Alta, Caglayan, Atmaca, & Ertekin, 2015) presentan un estudio que trata sobre el análisis experimental y teórico de un calentador de aire solar en placa. Los colectores de aire se probaron experimentalmente en un ángulo de inclinación de 35° y 2 m/s de velocidad del aire. Miden la temperatura ambiente, la temperatura de entrada, la temperatura de salida, la temperatura de la placa absorbedora, la temperatura de la placa inferior, la radiación solar, la velocidad del aire y la velocidad del flujo de aire del conducto. La temperatura del aire de salida y la eficiencia energética y de eficiencia del colector se calculan teóricamente. Como resultados muestran la temperatura media máxima de salida, la eficiencia energética media máxima y la eficiencia media máxima de exergía. (Kabeel, Khalil, Shalaby, & Zayed, 2016) realizan una investigación experimental de los calentadores de aire solares de placa plana y corrugada en V con PCM incorporado como material de almacenamiento de energía térmica. El calentador de aire solar integrado con cera de parafina como PCM fue diseñado y probado bajo las condiciones climáticas predominantes de la ciudad de Tanta, Egipto. Los parámetros que afectan el rendimiento térmico del calentador de aire solar de placa plana y corrugada en V se presentan con y sin PCM. Estos parámetros incluyen la radiación solar, la diferencia de temperatura del aire a través del calentador, el coeficiente de transferencia de calor convectivo entre la placa absorbente y el aire que fluye, la eficiencia térmica instantánea, la eficiencia promedio diaria y el tiempo de congelación PCM. Los parámetros de rendimiento térmico se estudian con diferentes caudales másicos. Se presentan como resultado las temperaturas de salida y las eficiencias de cada tipo de colector.

(Darici & Kilic, 2020) investigan experimentalmente el rendimiento térmico de dos colectores solares de aire construidos con placa de absorción trapezoidal corrugada y plana en condiciones climáticas de Konya / Turquía. Los experimentos lo realizan para tres flujos de masa de aire diferentes de 0.022, 0.033 y 0.044 kg / s. Los resultados que obtienen lo comparan con los del colector de aire solar con placa de absorción plana. Observan que la diferencia entre las temperaturas del aire de entrada y salida de los colectores solares aumenta a medida que disminuye el caudal másico. Presentan resultados de temperaturas y rendimientos térmicos de los colectores.

En (Simo-Tagne, Zoulalian, Rémond, & Rogaume, 2017) tienen como objetivo principal el desarrollar un modelo computacional y simular el secado de madera con un secador solar. Establecen dos conjuntos de ecuaciones: una para el colector solar y la otra para la cámara de secado. Comparan las temperaturas de salida calculadas y medidas del colector solar, obteniendo una predicción muy satisfactoria por el modelo. Analizan la humedad relativa y temperatura del sistema, y como afectan a estas variables el uso de un colector solar de placas planas.

(Shamekhi Amiri, B. Gorji, Gorji-Bandpy, & Jahanshai, 2018) realizan una investigación acerca del comportamiento de secado de capa delgada de las hojas de bálsamo de limón en un secador solar de modo indirecto con convección forzada. El rendimiento térmico del secador solar lo evalúan experimentalmente bajo las condiciones climáticas predominantes de Babol. La eficiencia térmica del colector la determinaron en condiciones realistas de irradiancia y temperatura ambiente.

En este trabajo, (Irshad, Yadav, Singh, & Kumar, 2018) fabrican un colector solar de placa plana con una sola cubierta utilizando la metodología estándar propuesta por otras investigaciones para la construcción de calentadores de aire solares convencionales. Registran la variación de la radiación solar, la temperatura de salida del aire y la variación de la temperatura de la placa absorbedora a lo largo del día. Calculan la eficiencia, la eficacia óptica efectiva y el coeficiente de pérdida de calor efectivo del colector solar de placa plana de cubierta única. También estudian el efecto de la velocidad del viento en el rendimiento del colector.

(Sasi Kumar & Chinnapandian, 2017) realizan pruebas para recopilar datos de diferentes condiciones atmosféricas. Los resultados fueron examinados tanto por convección libre como forzada. El colector lo realizan con un área de 2×1 m2, una lámina de aluminio de 5 mm de espesor recubierta con pintura negra, aislante de unos 10 cm de espesor y en el interior cubierto por la lana de vidrio de 25 mm de espesor que utilizan en la superficie del recinto.

En el presente trabajo se emplea el modelo de (Espinosa García & Ibañez Duharte, 2019) para su validación experimental.

1.3 Planteamiento del problema.

Los colectores solares para la conversión de la radiación solar en energía térmica tienen un bajo rendimiento térmico y es necesario mejorar su eficiencia. El objetivo es encontrar las condiciones de operación con las mínimas pérdidas de energía útil mediante la selección de parámetros óptimos de diseño que tomen en cuenta tanto parámetros geométricos como propiedades físicas de materiales del sistema. Con este propósito, se desarrolló en el trabajo (Espinosa García & Ibañez Duharte, 2019), un modelo de colector solar de placas planas con cubierta para calentamiento de aire obteniendo la caracterización térmica y la optimización del colector basada en la máxima eficiencia exergética. Sin embargo, se requiere que el modelo sea validado experimentalmente.

1.4 Objetivos.

Objetivo general:

Realizar el análisis de segunda ley de la termodinámica de un colector solar de aire y validar experimentalmente el modelo matemático utilizado para su optimización y caracterización térmica no estacionaria.

Objetivos específicos:

1. Construir prototipo de colector solar de placa plana.

Actividades:

- a) Selección de materiales a utilizar
- b) Diseño CAD de colector solar
- c) Construcción de colector

2. Modelar el comportamiento térmico no estacionario del colector solar de aire de placa plana. Actividades:

- a) Planteamiento del modelo físico de colector de placas planas con cubierta considerando todos los mecanismos de transferencia de calor presentes.
- b) Determinación del balance de energía de cada componente del colector
- c) Escritura de código de cómputo en MATLAB utilizando el método numérico RKF

3. Validar experimentalmente los resultados teóricos obtenidos con el modelo matemático. Actividades:

- a) Selección de instrumentos de medición
- b) Adquisición de datos experimentales
- c) Obtención de resultados teóricos con el modelo matemático utilizando los mismos datos de parámetros geométricos y propiedades de materiales tomados en cuenta para la construcción del prototipo.
- d) Comparación de los resultados teóricos del modelo con los experimentales del prototipo con base en pruebas estadísticas.
- e) Análisis de resultados

4. Realizar el análisis de segunda ley del sistema determinando el rendimiento exergético.

- a) Planteamiento de exergías de entrada y salida
- b) Determinación de la eficiencia exergética
- c) Implementación de expresiones del análisis exergético en el código computacional
- d) Análisis de resultados

5. Encontrar la configuración óptima del sistema con una menor destrucción de exergía, y, por tanto, una menor generación de entropía usando la técnica de algoritmo genético (AG).

- a) Implementación en el código de computo del AG
- b) Análisis de resultados

6. Realizar análisis de colector solar de placas planas para calentamiento de aire con diferentes configuraciones de la placa absorbedora.

- a) Selección de diferentes configuraciones con correlaciones definidas
- b) Edición del código para implementar las correlaciones en el modelo
- c) Análisis de resultados

1.5 Organización de la tesis.

Esta tesis estará constituida por cuatro capítulos:

Capítulo 1: se presentan los antecedentes del tema, se menciona el problema a resolver y los objetivos que se persiguen.

Capítulo 2: se presenta el marco teórico formado por los fundamentos teóricos que serán útiles para lograr los objetivos programados.

Capítulo 3: se describe el modelo matemático utilizado para realizar la caracterización térmica del CSA y el análisis exergético, así como una descripción del prototipo construido y del diseño de experimento realizado para la validación experimental del modelo. Además, se muestra una descripción de la técnica de optimización de algoritmo genético y diferentes configuraciones de la placa absorbedora que serán estudiadas.

Capítulo 4: se muestran los resultados obtenidos y sus respectivos análisis. Así como las conclusiones generales de todo el estudio.

1.6 Conclusión.

En este capítulo se describió el punto de partida de nuestro estudio, permitiéndonos determinar nuestro problema a resolver y objetivos de trabajo. Además, se mencionan las actividades que se deben realizar para lograr los objetivos planteados.

1.7 Bibliografía.

(s.f.).

- Çengel, Y. A. (2011). Transferencia de calor y masa. McGraw-Hill Interamericana de España S.L.
- Chabanea, F., Moummia, N., Brima, A., & Benramache, S. (2013). Thermal efficiency analysis of a single-flow solar air heater with different mass flow rates in a smooth plate. *rontiers in Heat and Mass Transfer*.
- Darici, S., & Kilic, A. (2020). Comparative study on the performances of solar air collectors with trapezoidal corrugated and flat absorber plates. *Heat and Mass Transfer*.
- Deniz Alta, Z., Caglayan, N., Atmaca, I., & Ertekin, C. (2015). Theoretical and experimental investigation of the performance of back-pass solar air heaters. *Turkish Journal of Engineering & Environmental Sciences*.
- Duffie, J. A., & Beckman, W. A. (2013). *Solar Engineering of Thermal Processes*. John Wiley & Sons, Inc.
- Espinosa García, G. E., & Ibañez Duharte, G. (2019). *Caracterización térmica y análisis de irreversibilidades en colectores solares de placas planas para calentamiento de aire*. Tuxtla Gutierrez.
- Irshad, M., Yadav, A., Singh, R., & Kumar, A. (2018). Mathematical modelling and performance analysis of single pass flat plate solar collector. *Materials Science and Engineering*.
- Kabeel, A., Khalil, A., Shalaby, S., & Zayed, M. (2016). xperimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. *Energy Conversion and Management 113*, 264 - 272.
- Kishk, S. S., ElGamal, R. A., & ElMasry, G. M. (2019). Effectiveness of reciclable aluminum cans in fabricating an efficient solar collector for drying agricultural products. *Renewable Energy*, 307 -316.
- Sasi Kumar, S. B., & Chinnapandian, M. (2017). The performance study of a solar flat plate type air collector with natural and forced convection. *Journal of Industrial Pollution Control*, 1155 1162.
- Sawin, J. L. (2016). ENERGÍAS RENOVABLES 2016 REPORTE DE LA SITUACIÓN MUNDIAL. París.
- SENER. (2017). Reporte de Avance de Energías Limpias 2016. México.
- Shamekhi Amiri, S., B. Gorji, T., Gorji-Bandpy, M., & Jahanshai, M. (2018). Drying behaviour of lemon balm leaves in an indirect double-pass packed bed forced convection solar dryer system. *Case Studies in Thermal Engineering*.

- Simo-Tagne, M., Zoulalian, A., Rémond, R., & Rogaume, Y. (2017). MATHEMATICAL MODELLING AND Numerical simulation of a simple solar dryer for tropical wood using a collector. *Applied Thermal Engineering*.
- Suzuki, A. (1988). General theory of exergy-balance analysis and application to solar collectors. *Energy*, 153 160.

CAPITULO 2: FUNDAMENTOS TEÓRICOS

2.1 Introducción.

Antes de comenzar la validación experimental y análisis de segunda ley para cumplir con los objetivos planteados se necesita tener las bases teóricas.

2.2 Ajuste de datos.

(Kishk, ElGamal, & ElMasry, 2019) indican que el error porcentual relativo medio (P), el chicuadrado reducido (χ^2) y el error cuadrático medio (RMSE) son utilizados para comparar la bondad relativa de ajuste entre datos experimentales y teóricos predichos. Estos parámetros se pueden calcular de la siguiente manera:

$$P = \frac{100}{N} \sum_{i=1}^{N} \frac{|V_{exp,i} - V_{pre,i}|}{MR_{exp,i}}$$

$$\chi^{2} = \frac{\sum_{i=1}^{N} (V_{exp,i} - V_{pre,i})^{2}}{N-n}$$

$$\left\{ \begin{array}{c} 1 \end{array} \right\} Error porcentual relativo medio \\
\left\{ \begin{array}{c} 2 \end{array} \right\} Chi-cuadrado reducido \\
RMSE = \sqrt{\frac{\sum_{i=1}^{N} (V_{exp,i} - V_{pre,i})^{2}}{N}} \\
\left\{ \begin{array}{c} 3 \end{array} \right\} Error cuadrático medio \\
\end{array}$$

donde $V_{exp,i}$ es el valor observado experimentalmente, $V_{pre,i}$ es el valor predicho, N es el número de observaciones y n es el número de constantes del modelo.

2.3 Análisis de incertidumbre.

(Kishk, ElGamal, & ElMasry, 2019) también nos indican que la estimación de la eficiencia térmica del colector solar depende básicamente de las mediciones precisas de los principales parámetros utilizados en el cálculo, tales como la velocidad del aire, la velocidad del flujo de aire, la radiación solar y las temperaturas en la entrada y salida de los colectores, así como las temperaturas registradas. Como estos parámetros se midieron mediante el uso de diferentes instrumentos, la certeza de cada uno debe cuantificarse para evaluar la aceptabilidad de estos parámetros en todos los cálculos experimentales posteriores y para evitar la propagación de errores en ensayos repetidos. Estáticamente hablando, Kline y McClintock; Abernethy y Thompson, y Moffat ponen el marco para estimar la incertidumbre basándose en el hecho de que el resultado R de un experimento es una función de un conjunto de todos los parámetros medidos como:

$$R = f(X_1, X_2, X_3, \dots, X_n)$$
⁽⁴⁾ Resultado R de experimento

Al estimar la incertidumbre de cada parámetro de entrada individual δX_i , la incertidumbre general en el resultado calculado δR podría estimarse con buena precisión utilizando una combinación cuadrada de suma de raíces de los efectos de todas las entradas individuales involucradas.

$$\delta R = \left[\sum_{i=1}^{n} \left(\frac{\delta R}{\delta X_{i}} \delta X_{i}\right)^{2}\right]^{1/2}$$
^{{5} Incertidumbre

2.4 La segunda ley de la termodinámica (Çengel, 2011).

Depósitos de energía térmica.

Un cuerpo que posee una capacidad de energía térmica relativamente grande que pueda suministrar o absorber cantidades finitas de calor sin experimentar ningún cambio de temperatura, tal cuerpo se llama depósito de energía térmica, o sólo depósito. Un depósito que suministra energía en la forma de calor se llama fuente, y otro que absorbe energía en la forma de calor se llama sumidero.

Procesos reversibles e irreversibles.

Los procesos que ocurren en cierta dirección, y una vez ocurridos, no se pueden revertir por sí mismos de forma espontánea y restablecer el sistema a su estado inicial se clasifican como procesos irreversibles. Un proceso reversible se define como un proceso que se puede invertir sin dejar ningún rastro en los alrededores. Es decir, tanto el sistema como los alrededores vuelven a sus estados iniciales una vez finalizado el proceso inverso.

Se debe señalar que es posible volver un sistema a su estado original siguiendo un proceso, sin importar si éste es reversible o irreversible. Pero para procesos reversibles, esta restauración se hace sin dejar ningún cambio neto en los alrededores, mientras que para procesos irreversibles los alrededores normalmente hacen algún trabajo sobre el sistema, por lo tanto, no vuelven a su estado original. Los procesos reversibles en realidad no ocurren en la naturaleza, sólo son idealizaciones de procesos reales. Los reversibles se pueden aproximar mediante dispositivos reales, pero nunca se pueden lograr; es decir, todos los procesos que ocurren en la naturaleza son irreversibles. Pero sirven como modelos idealizados con los que es posible comparar los procesos reales. Los dispositivos consumen el mínimo de trabajo cuando se usan procesos reversibles en lugar de irreversibles.

Los procesos reversibles pueden ser considerados como límites teóricos para los irreversibles correspondientes. Algunos procesos son más irreversibles que otros. Quizá nunca se tenga un proceso reversible, pero es posible aproximarse. A medida que se tiende hacia un proceso reversible, un dispositivo entrega más trabajo o requiere menos trabajo. El concepto de proceso reversible conduce a la definición de eficiencia según la segunda ley para procesos reales, que es el grado de aproximación al proceso reversible correspondiente. Esto permite comparar el desempeño de diferentes dispositivos diseñados para hacer la misma tarea con base en sus eficiencias. Mientras mejor sea el diseño, menores son las irreversibilidades y mayor es la eficiencia según la segunda ley.

Irreversibilidades.

Los factores que causan que un proceso sea irreversible se llaman irreversibilidades, las cuales son la fricción, la expansión libre, el mezclado de dos fluidos, la transferencia de calor a través de una diferencia de temperatura finita, la resistencia eléctrica, la deformación inelástica de sólidos y las reacciones químicas. La presencia de cualquiera de estos efectos hace que un proceso sea irreversible. Un proceso reversible no incluye ninguno de ellos.

Procesos interna y externamente reversibles.

Un proceso se denomina internamente reversible si no ocurren irreversibilidades dentro de las fronteras del sistema durante el proceso. Un proceso es denominado externamente reversible si no ocurren irreversibilidades fuera de las fronteras del sistema durante el proceso. La transferencia de calor entre un depósito y un sistema es un proceso externamente reversible si la superficie exterior del sistema está a la temperatura del depósito. Se le denomina a un proceso totalmente reversible, o nada más reversible, si no tiene que ver con irreversibilidades dentro del sistema o sus alrededores.

Entropía.

La primera ley de la termodinámica trata con la propiedad energía y la conservación de ella; mientras que la segunda define una propiedad llamada entropía. El cambio de entropía de un sistema cerrado durante un proceso irreversible siempre es mayor que la transferencia de entropía. Es decir, alguna entropía es generada o creada durante un proceso irreversible, y esta generación se debe completamente a la presencia de irreversibilidades. La entropía de un sistema aislado durante un proceso siempre se incrementa o, en el caso límite de un proceso reversible, permanece constante. En otros términos, nunca disminuye. Esto es conocido como el principio de incremento de entropía. La ausencia de cualquier transferencia de calor, el cambio de entropía solamente se debe a las irreversibilidades y su efecto es siempre incrementar la entropía.

La propiedad entropía es una medida de desorden molecular o aleatoriedad de un sistema, y la segunda ley de la termodinámica establece que la entropía puede crearse, pero no destruirse. Por consiguiente, el cambio de entropía de un sistema durante un proceso es mayor a la transferencia de entropía en una cantidad igual a la entropía generada durante el proceso el dentro del sistema. La entropía es una propiedad y el valor de una propiedad no cambia a menos que el estado del sistema cambie. Así, el cambio de entropía de un sistema es cero si el estado del sistema no cambia durante el proceso.

La entropía puede transferirse hacia o desde un sistema por dos mecanismos: transferencia de calor y flujo másico. La transferencia de entropía es reconocida en la frontera del sistema cuando la cruza, y representa la entropía ganada o perdida por un sistema durante un proceso. Las irreversibilidades siempre ocasionan que la entropía de un sistema aumente, por lo tanto, la generación de entropía es una medida de entropía creada por tales efectos durante un proceso.

2.5 Exergía: una medida del potencial de trabajo.

Eficiencia según la segunda ley.

Se define a la eficiencia según la segunda ley η_{II} como la relación entre la eficiencia térmica real y la eficiencia térmica máxima posible (reversible) bajo las mismas condiciones. Está ideada para servir como una medida de aproximación a la operación reversible, en consecuencia, su valor debe cambiar de cero en el peor caso (destrucción completa de exergía) a 1 en el mejor (sin destrucción de exergía). Con esta perspectiva, se define la eficiencia según la segunda ley de un sistema durante un proceso como:

Por consiguiente, al determinar la eficiencia según la segunda ley, primero necesitamos determinar cuánta exergía o potencial de trabajo se consume durante un proceso.

Transferencia de exergía.

La exergía, como la energía, puede transferirse hacia o desde un sistema en tres formas: calor, trabajo y flujo másico. Esta transferencia es reconocida en la frontera del sistema cuando la exergía la cruza, por lo que representa la exergía ganada o perdida por un sistema durante un proceso. La transferencia de calor Q en una ubicación que se encuentra a temperatura termodinámica T siempre está acompañada por la transferencia de exergía X_{calor} en la cantidad de

$$X_{calor} = \left(1 - \frac{T_0}{T}\right) Q \qquad (7) Exergía por calor$$

Principio de disminución de exergía y destrucción de exergía.

El principio de conservación de la energía indica que ésta no puede crearse ni destruirse durante un proceso. El principio de incremento de entropía, el cual puede considerarse como uno de los enunciados de la segunda ley, indica que esa entropía puede ser creada pero no destruirse. Un enunciado alternativo de la segunda ley de la termodinámica, llamado principio de disminución de exergía, el cual es la contraparte del principio de incremento de entropía es: La exergía de un sistema aislado durante un proceso siempre disminuye o, en el caso límite de un proceso reversible, permanece constante; en otros términos, la exergía nunca aumenta y es destruida durante un proceso real. Esto se conoce como el principio de disminución de exergía. Para un sistema aislado, la disminución de exergía es igual a la exergía destruida.

Las irreversibilidades siempre generan entropía y cualquier cosa que genera entropía siempre destruye la exergía. La exergía destruida es proporcional a la entropía generada. La exergía destruida es una cantidad positiva para cualquier proceso real y que se convierte en cero para uno reversible. La exergía destruida representa el potencial de trabajo perdido y también se denomina irreversibilidad o trabajo perdido.

2.6 Destrucción exergética.

(Suzuki, 1988) nos indica que la tasa de aniquilación exergética acompañada de flujo sucede mientras el calor se transfiere de una parte caliente a una fría. La expresión para la tasa de aniquilación de exergía es

$$E = \int_{T_{cold}}^{T_{hot}} Q\left(\frac{T_a}{T^2}\right) dT$$
^[8] Aniquilación exergética

Resolvemos

$$E = \int_{T_{cold}}^{T_{hot}} Q\left(\frac{T_a}{T^2}\right) dT = QT_a \int_{T_{cold}}^{T_{hot}} T^{-2} dT = QT_a \left[-T^{-1}\right]_{T_c}^{T_h} = QT_a \left[\frac{1}{T_c} - \frac{1}{T_h}\right]$$

$$\begin{array}{c} \left\{\begin{array}{c}9\end{array}\right\}\\ \text{Aniquilación}\\ \text{exergética}\end{array} \end{array}$$

2.7 Optimización multidimensional

Las técnicas de optimización multidimensional sin restricciones se clasifican de varias maneras. A menudo se dividen según si necesitan una evaluación derivada. Los métodos que no requieren evaluación derivada se denominan métodos directos o sin gradiente; como lo es el algoritmo genético utilizado en este trabajo. Sin embargo, como mención, para tener claro que existen otros caminos, se tienen los métodos que requieren derivadas los cuales se denominan métodos de gradiente o de descenso (o ascenso). Los métodos de gradiente utilizan explícitamente información derivada para generar algoritmos eficientes para localizar óptimos. (Dukkipati, 2023)

Los métodos de gradiente no son tan eficientes como algunos de los métodos más recientes; sin embargo, constituyen una base conceptual para muchos de ellos. La optimización sigue la dirección del gradiente en este método. El gradiente de una función escalar multivariable f(x, y, ...) denotado como ∇f , empaqueta toda la información de sus derivadas parciales en un vector:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \vdots \end{bmatrix}$$
 { 10 } Gradiente de función escalar

Cuando las entradas de una función f viven en más de dos dimensiones, ya no es tan cómodo ver su gráfica como un terreno montañoso. Ya sea que el espacio de entradas de f sea bidimensional, tridimensional o de 1,000,000 de dimensiones, el gradiente de f da el vector en ese espacio de entrada que apunta en la dirección que hace que f crezca más rápido. Otra característica

importante es en los mapas de curvas de nivel: cada vector es perpendicular a la curva de nivel que toca. El gradiente de f debería apuntar en la dirección que nos llevará a la siguiente curva con el menor tamaño de paso (característica que nos permite iterar), principio fundamental para métodos basados en gradiente.

2.8 Conclusión.

Estos conocimientos teóricos nos orientaran en todo el proceso de la metodología de nuestra investigación. Sin estos fundamentos es imposible tener una idea clara de lo que se hará o de lo que hicieron diversos autores.

2.9 Bibliografía.

(s.f.).

Çengel , Y. A. (2011). Transferencia de calor y masa. McGraw-Hill Interamericana de España S.L.

Dukkipati, R. V. (2023). Applied Numerical Methods using matlab. Mercury Learning and Information LLC.

- Kishk, S. S., ElGamal, R. A., & ElMasry, G. M. (2019). Effectiveness of reciclable aluminum cans in fabricating an efficient solar collector for drying agricultural products. *Renewable Energy*, 307 -316.
- Suzuki, A. (1988). General theory of exergy-balance analysis and application to solar collectors. *Energy*, 153 160.

CAPÍTULO 3: ANÁLISIS TEÓRICO Y EXPERIMENTAL

3.1 Introducción.

Se presenta una metodología para desarrollar el modelo de un colector de placas planas para calentamiento de aire con cubierta. Se obtiene un sistema de ecuaciones diferenciales ordinarias acopladas las cuales se originan del balance de energía en cada componente del colector. La solución de este sistema nos da el comportamiento térmico del colector; dicha solución es obtenida aplicando el método numérico de Runge Kutta Fehlberg. Además, se presenta el diseño del experimento con el cual se obtendrán los datos para realizar la validación experimental del modelo matemático. Posteriormente, los resultados del comportamiento térmico se utilizarán para calcular las pérdidas exergéticas y así poder determinar la eficiencia exergética.

3.2 Modelación matemática del comportamiento térmico no estacionario del colector solar de aire (CSA) de placa plana y análisis exergético

3.2.1 Descripción del sistema modelado y consideraciones

Se considera el modelo del colector constituido por siete elementos:

- 1 Cubierta superior (CS)
- 2 Recinto: espacio entre la PA y CS.
- 3 Placa absorbedora (PA)
- 4 Canal del fluido de trabajo (FT): espacio entre PA y AI.
- 5 Aislante (AI).
- 6 Placa base (PB).
- 7 Marcos laterales (ML).

Figura 4 Transferencias de calor en los elementos del colector

Las consideraciones fundamentales en el modelo son:

- Conducto del aire aislado térmicamente en su base y paredes laterales, y cubierta superior expuesta al sol.
- Operación en estado transitorio.
- La conducción de calor en las placas solo se despreciará en la CS por la forma de construcción del colector.
- > La temperatura del aire de entrada es igual a la temperatura ambiente.
- > El aire dentro del colector se considera como un gas ideal transparente a la radiación.
- > La temperatura ambiente, radiación y velocidad del viento varían con el tiempo.
- > Para escribir las ecuaciones de balance de energía, se considera un elemento diferencial con una longitud Δx .

Se consideran las transferencias por conducción, convección y radiación para seis de los siete elementos del colector, como se muestra en la figura:

Figura 5 Transferencias de calor en los elementos del colector

3.2.2 Ecuaciones de balance de energía

Para cada elemento a analizar realizamos el balance de energía y despreciando la energía cinética y potencial, tenemos

$$E_{ent} - E_{sal} = \Delta E_{sist} = \Delta U \qquad \{ 11 \} Balance \ de \ energía$$

Con excepción del fluido de trabajo, la única forma de transferencia de energía hacia o desde el sistema es en forma de calor

$$E_{ent} - E_{sal} = (Q_{ent} - Q_{sal})$$
[{] 12 } Balance de energía

Bajo condiciones transitorias, nuestra ecuación de balance para cada elemento será el siguiente:

$$\frac{mc_{prom}\,\partial T_x}{\partial t} = (Q_{ent} - Q_{sal})$$
⁽¹³⁾ Ecuación de balance

3.2.2.1 Cubierta superior

Ecuación de balance para cubierta superior:

$$\frac{m_{cs}c_{cs}\,\partial T_{cs}}{\partial t} = Q_{cs} + Q_{pa-cs} - Q_{cs-a} \qquad (14) Balance cubierta superior$$

La cubierta superior absorbe la radiación solar del sol y cede calor por convección y radiación al ambiente y recibe calor por convección y radiación de la placa absorbente. Por lo tanto, para la ecuación de balance de la cubierta superior obtenemos

$$\frac{\partial T_{cs}}{\partial t} = \frac{1}{\rho_{cs} V_{cs} C_{cs}} \begin{bmatrix} G_{cs} A_{cs} + h_{c,pa-cs} A_{cs} (T_{pa} - T_{cs}) + h_{r,pa-cs} A_{cs} (T_{pa} - T_{cs}) & \frac{15}{Balance} \\ - U_t A_{cs} (T_{cs} - T_a) \end{bmatrix}$$

3.2.2.2 Placa absorbedora

Ecuación de balance para placa absorbente:

$$\frac{m_{pa}c_{pa}\partial T_{pa}}{\partial t} = Q_{pa} - Q_{pa-cs} - Q_{pa-ft} - Q_{pa-ai} - Q_{pa-mi}$$
⁽¹⁶⁾ Balance place absorbedora

Cuando la radiación solar atraviesa la cubierta superior, es absorbida por la placa absorbente aumentando su temperatura. Luego, la placa absorbente transfiere calor por convección a la cubierta superior y al fluido de trabajo, por radiación a la cubierta superior y al aislamiento y por conducción al marco lateral. Por lo tanto, para la ecuación de balance de la placa absorbedora obtenemos

$$\frac{\partial T_{pa}}{\partial t} = \frac{1}{\rho_{pa}V_{pa}C_{pa}} \begin{bmatrix} G_{pa}A_{pa} - (h_{c,pa-cs}A_{pa} + h_{r,pa-cs}A_{pa})(T_{pa} - T_{cs}) \\ - h_{c,pa-ft}A_{pa}(T_{pa} - T_{ft}) - h_{r,pa-ai}A_{pa}(T_{pa} - T_{ai}) \\ - h_{c2}A_{pa-ml}(T_{pa} - T_{ml}) \end{bmatrix}$$

3.2.2.3 Fluido de trabajo

Ecuación de balance para fluido de trabajo:

$$\frac{m_{ft}c_{ft}\,\partial T_{ft}}{\partial t} = Q_{pa-ft} - Q_{ft-ai} - Q_{ft}$$
[{] 18 } Balance fluido de trabajo

El aire pasa por el conducto del colector y recibe calor por convección de la placa absorbente y la placa aislante inferior. Para el balance del fluido de trabajo, obtenemos

$$\frac{\partial T_{ft}}{\partial t} = \frac{1}{\rho_{ft}V_{ft}C_{ft}} \Big[h_{c,pa-ft}A_{pa}(T_{pa} - T_{ft}) - h_{c,ft-ai}A_{ai}(T_{ft} - T_{ai}) \qquad (19) Balance fluido de trabajo - h_{ft}(T_{fts} - T_{fte})\Big]$$

3.2.2.4 Aislante

Ecuación de balance para aislante:

$$\frac{m_{ai}c_{ai}\,\partial T_{ai}}{\partial t} = Q_{pa-ai} + Q_{ft-ai} - Q_{ai-pb} - Q_{ai-ml} \qquad (20) Balance de aislamiento$$

El aislamiento recibe calor de radiación de la placa absorbente. Además, transfiere calor por convección al fluido y por conducción a la placa base y al marco lateral. Balance para la placa aislante, obtenemos

$$\frac{\partial T_{ai}}{\partial t} = \frac{1}{\rho_{ai}V_{ai}C_{ai}} \Big[h_{r,pa-ai}A_{pa} \big(T_{pa} - T_{ai} \big) + h_{c,ft-ai}A_{ai} \big(T_{ft} - T_{ai} \big) \\ - h_{c3}A_{ai-pb} \big(T_{ai} - T_{pb} \big) - h_{c4}A_{ai-ml} \big(T_{ai} - T_{ml} \big) \Big]$$

$$\begin{bmatrix} 21 \\ Balance AI \end{bmatrix}$$

3.2.2.5 Placa base

Ecuación de balance para placa base:

$$\frac{m_{pb}c_{pb}\partial T_{pb}}{\partial t} = Q_{ai-pb} - Q_{pb-a} - Q_{pb-ml}$$
^{{ 22 } Balance place base}

La placa base recibe calor por conducción del aislamiento y transfiere calor por convección y radiación al ambiente y por conducción al marco lateral. Se obtiene para la placa base el siguiente balance

$$\frac{\partial T_{pb}}{\partial t} = \frac{1}{\rho_{pb}V_{pb}C_{pb}} \left[h_{c3}A_{ai-pb} \left(T_{ai} - T_{pb} \right) - U_{pb}A_{pb} \left(T_{pb} - T_{a} \right) - h_{c5}A_{pb-ml} \left(T_{pb} - T_{ml} \right) \right]$$

$$(23) Balance PB$$

3.2.2.6 Marco lateral

Ecuación de balance para marco lateral:

$$\frac{m_{ml}c_{ml}\partial T_{ml}}{\partial t} = Q_{ml} + Q_{cs-ml} + Q_{pa-ml} + Q_{ai-ml} + Q_{pb-ml}$$

$$-Q_{ml-a}$$

$$(24) Balance marcollateral$$
El marco lateral intercambia calor por conducción con la placa absorbente, el aislamiento y la placa base y por conducción y convección con el medio ambiente. Obtenemos para el balance del marco lateral

$$\frac{\partial T_{ml}}{\partial t} = \frac{1}{\rho_{ml} V_{ml} C_{ml}} \begin{bmatrix} G_{ml} A_{ml_{c1}} + h_{c2} A_{pa-ml} (T_{pa} - T_{ml}) + h_{c4} A_{ai-ml} (T_{ai} - T_{ml}) \\ + h_{c5} A_{pb-ml} (T_{pb} - T_{ml}) - U_{s} A_{ml} (T_{ml} - T_{a}) \end{bmatrix}$$

$$E_{alance ML}$$

3.2.3 Propiedades físicas de la sustancia de trabajo y coeficientes de transferencia de calor

3.2.3.1 Propiedades físicas del aire en función de la temperatura

Las propiedades del viento se consideran variables con la temperatura. (Bracamonte & Baritto, 2013) cita las siguientes expresiones donde la temperatura del fluido se expresa en grados centígrados.

Para el calor específico del aire

$$c_p = 999.2 + 0.1434T + 1.101x10^{-4}T^2 - 6.7581x10^{-8}T^3$$
 { 26 } Calor específico aire

Para la conductividad térmica del aire

$$k = 0.0244 + 0.6773 \times 10^{-4} T$$
 { 27 } Conductividad térmica aire

Para la viscosidad cinemática del aire

$$v = 0.1284x10^{-4} + 0.00105x10^{-4}T$$
 { 28 } Viscosidad cinemática aire

Para la densidad del aire

$$\rho = \frac{353.44}{T} (K)$$
 { 29 } Densidad del aire

3.2.3.2 Coeficientes de transferencia de calor entre los diferentes componentes

Cubierta superior.

En la cubierta superior el calor Q_{cs} absorbido, como lo indica (Soriga, 2016), es

$$Q_{cs} = G_{cs}A_{cs} \qquad \{ 30 \} Calor absorbido CS$$

Donde A_{cs} es el área y G_{cs} es la radiación absorbida por la cubierta superior. Esta radiación se calcula con la relación

$$G_{cs} = \alpha_{cs} G_T$$

Donde α_{cs} es la absortividad de la placa superior y G_T es la irradiancia solar global sobre la superficie inclinada. La absortividad se relaciona con la transmitancia con

$$\alpha_{cs} = 1 - \tau_{cs,a}$$
 (32) Absortividad CS

 $\tau_{cs,a}$ es la transmitancia al considerar sólo pérdidas por absorción. Para calcular $\tau_{cs,a}$ en (Soriga, 2016) se indica la ecuación de la siguiente manera

$$\tau_{cs,a} = \exp(-K_{cs}L) \qquad \qquad \{33\} Transmitancia CS$$

 K_{cs} es el coeficiente de extinción y L es la trayectoria real de la radiación a través de una capa transparente. Se determina como

$$L = \frac{\delta_{cs}}{\cos(\theta_2)}$$
^{ 34 } Trayectoria real de la radiación

Donde δ_{cs} es el espesor de la cubierta superior y θ_2 es el ángulo de refracción, el cual se calcula por la ley de Snell

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
 (35) Ley de Snell

donde $n_1 y n_2$ son los índices de refracción de los medios y θ_1 el ángulo de incidencia. El ángulo de incidencia se determina con la siguiente expresión:

$$\cos \theta_{1} = \sin \delta \sin \phi \cos \beta - \sin \delta \cos \phi \sin \beta \cos \gamma + \cos \delta \cos \phi \cos \beta \cos \omega \qquad \{ \begin{array}{l} 36 \end{array} \} \stackrel{\textit{(angulo de)}}{incidencia} \\ + \cos \delta \sin \phi \sin \beta \cos \gamma \cos \omega + \cos \delta \sin \beta \sin \gamma \sin \omega \end{array}$$

Y el ángulo θ_z o ángulo cenital solar se determina con la ecuación

 $\cos \theta_z = \sin \delta \sin \phi + \cos \delta \cos \phi \cos \omega \qquad \{37\} \text{ ángulo cenital}$

En estas dos ecuaciones β es el ángulo de inclinación del colector y γ es el ángulo azimutal. El calor transferido de la placa absorbedora a la cubierta superior Q_{pa-cs} , consiste en transferencia de calor por convección y por radiación. La transferencia de calor por convección está dada por la ley de Newton de enfriamiento

$$Q_{conv} = h_{c,pa-cs}A_{cs}(T_{pa} - T_{cs})$$
^{ 38 } Convección entre PA y CS

La transferencia de calor por radiación entre las dos superficies está dada por la ecuación

$$Q_{rad} = h_{r,pa-cs} A_{cs} (T_{pa} - T_{cs})$$
^{{ 39} } Radiación entre PA y CS

Por lo tanto, tenemos que

$$Q_{pa-cs} = \left[h_{c,pa-cs}A_{cs}(T_{pa} - T_{cs}) + h_{r,pa-cs}A_{cs}(T_{pa} - T_{cs})\right] \qquad \{40\} Convección y radiación PA-CS CS\}$$

Donde A_{cs} , T_{pa} y T_{cs} son el área de la cubierta superior, la temperatura de la placa absorbedora y la temperatura de la cubierta superior, respectivamente. El coeficiente de transferencia de calor por convección de la placa absorbente a la cubierta superior $h_{c,pa-cs}$ lo indica (Soriga, 2016) como

$$h_{c,pa-cs} = \frac{Nu_{pa-cs}k_{vi-Tm1}}{\delta_{pa-cs}}$$
^{{ 41} } Coeficiente convección PA-CS

Con las siguientes consideraciones: todas las propiedades son calculadas con la temperatura media

$$T_{m1} = \frac{T_{pa} + T_{cs}}{2}$$
^{ 42 } Temperatura media PA-CS

Para un ángulo de inclinación del colector de hasta 60°, es decir, *para* $\beta \le 60^\circ$: el número de Nusselt está dado por

$$Nu_{pa-cs} = 1 + 1.446 \left[1 - \frac{1708}{Ra_{pa-cs}\cos(\beta)} \right]^{+} \left\{ 1 - \frac{1708[\sin(1.8\beta)]^{1.6}}{Ra_{pa-cs}\cos(\beta)} \right\} + \left\{ \left[\frac{Ra_{pa-cs}\cos(\beta)}{5830} \right]^{0.333} - 1 \right\}^{+}$$

donde el número de Rayleigh se determina con la siguiente formula

$$Ra_{pa-cs} = \frac{g\beta_{v,pa-cs}(T_{pa} - T_{cs})\delta_{pa-cs}^{3}}{a_{vi-Tm1}v_{vi-Tm1}}$$
^{{44} Número de Rayleigh

g es la constante gravitacional, $\beta_{v,pa-cs} = 1/T_{m1}$ es el coeficiente de expansión volumétrica, δ_{pa-cs} es la distancia entre la placa absorbedora y la cubierta superior, a_{vi-Tm1} es la difusividad térmica del viento a temperatura media y v_{vi-Tm1} es la viscosidad cinemática del viento a temperatura media.

El coeficiente de transferencia de calor por radiación de la placa absorbente a la cubierta superior $h_{r,pa-cs}$, (Soriga, 2016) lo indica de la siguiente manera

$$h_{r,pa-cs} = \frac{\sigma(T_{cs} + T_{pa})(T_{cs}^2 + T_{pa}^2)}{\left(\frac{1}{\varepsilon_{cs}}\right) + \left(\frac{1}{\varepsilon_{pa}}\right) - 1}$$
^[45] Coeficiente radiación PA-CS

donde σ es la constante de Stefan – Boltzmann, ε_{cs} es la emitancia de la cubierta superior y ε_{pa} es la emitancia de la placa absorbedora.

La transferencia de calor de la cubierta superior al ambiente Q_{cs-a} , se determina con

$$Q_{cs-a} = [U_t A_{cs} (T_{cs} - T_a)]$$
^{{46}} Transferencia de calor CS-Amb

Donde (Bracamonte & Baritto, 2013) nombra a U_t como el coeficiente de transferencia de calor general

$$U_t = h_{c,cs-a} + h_{r,cs-a}$$
 { 47 } Coeficiente de transferencia de calor general

El coeficiente de transferencia de calor por convección desde la cubierta superior al ambiente $h_{c.cs-a}$, (Soriga, 2016) lo determina a partir de

$$h_{c,cs-a} = \frac{Nu_{cs-a}k_{vi-Tm2}}{L_{cs}}$$
^{ 48 } Convección CS-Amb

Con las siguientes consideraciones:

Todas las propiedades son calculadas con la temperatura media 2

$$T_{m2} = \frac{T_a + T_{cs}}{2}$$
^{ 49 } Temperatura media CS-Amb

 k_{vi-Tm2} es la conductividad térmica del viento a temperatura media 2, L_{cs} es la longitud característica de la cubierta superior. Basándonos en (Çengel , 2011), para una placa plana, la longitud característica es la distancia x desde el borde de ataque, en este caso

$$L_{cs} = Long_{cs}$$
 { 50 } Longitud característica

Para Nu_{cs-a} (Hedayatizadeh, Sarhaddi, Safavinejad, Ranjbar, & Chaji, 2016) utiliza $Nu_{cs-a} = 5.7 + 3.8V_{vi}$ (51) Nusselt CS-Amb

El coeficiente de transferencia de calor por radiación desde la cubierta superior al ambiente $h_{r,cs-a}$, (Soriga, 2016) lo determina a partir de

$$h_{r,cs-a} = \varepsilon_{cs}\sigma(T_{cs} + T_a)(T_{cs}^2 + T_a^2)$$
^{{52} Radiación CS-Amb

Donde ε_{cs} es la emisividad de la cubierta superior.

Placa absorbedora.

En la cubierta absorbedora el calor Q_{pa} absorbido, como lo indica (Soriga, 2016), es

$$Q_{pa} = \begin{bmatrix} G_{pa} A_{pa} \end{bmatrix}$$
 (53) Calor absorbido PA

Donde G_{pa} es la irradiancia solar absorbida por la placa, que se determina a partir de

$$G_{pa} = \tau_{cs} \alpha_{pa} G_T$$
 { 54 } Radiación absorbida PA

Donde τ_{cs} es la transmisividad de la cubierta superior, α_{pa} es la absortividad de la placa absorbedora.

La transferencia de calor Q_{pa-ft} se da con

$$Q_{pa-ft} = \left[h_{c,pa-ft}A_{pa}\left(T_{pa} - T_{ft}\right)\right]$$
^{{55} Transferencia entre PA-FT

El coeficiente de transferencia de calor por convección de la placa absorbedora al fluido de trabajo lo indica (Mortazavi & Ameri, 2018) como

$$h_{c,pa-ft} = \frac{N_u k_{vi-tm3}}{D_h}$$
^{ 56 } Coeficiente convección PA-FT

Lo indica (Duffie & Beckman, 2013) para flujo laminar como:

1 2

$$N_{u} = 4.9 + \frac{0.0606 \left(\frac{RePrD_{h}}{L}\right)^{1.2}}{1 + 0.0909 \left(\frac{RePrD_{h}}{L}\right)^{1.2} Pr^{0.17}}$$
 (57) Nusselt flujo laminar

Y para flujo turbulento, lo indica (Bracamonte & Baritto, 2013) como:

$$N_u = 0.0158 Re_{pa-ft}^{0.8}$$
 (58) Nusselt flujo turbulento

Donde el número de Reynolds se estima con

$$Re_{pa-ft} = \frac{V_{vi}D_h\rho_{vi-Tm3}}{\mu_{vi-Tm3}}$$
^{{59}

 V_{vi} es la velocidad del viento, D_h es el diámetro hidráulico del ducto, ρ_{vi-Tm3} es la densidad del viento a temperatura media 3, μ_{vi-Tm3} es la viscosidad dinámica del viento a temperatura media 3 y k_{vi-tm3} es la conductividad térmica del viento a temperatura media 3. La temperatura media 3 es

$$T_{m3} = \frac{T_{pa} + T_{ft}}{2}$$
(60 } Temperatura media PA-FT

El diámetro hidráulico para el ducto es

$$D_{h} = \frac{2(\delta_{ai-pa}Anch_{pa})}{(\delta_{ai-pa} + Anch_{pa})}$$

$$\begin{cases} 61 \\ \hline Diámetro hidráulico ducto \\ \hline One \\ \hline$$

Se sabe que el flujo másico es

$$\dot{m} = \rho A_t V_{prom}$$
 { 62 } Flujo másico

 A_t es el área de la sección transversal normal a la dirección del flujo, ρ es la densidad del fluido y V_{prom} es la velocidad promedio del fluido. Por lo tanto, la ecuación de Reynolds se puede expresar en función del flujo másico

$$Re_{pa-ft} = \frac{2(\delta_{ai-pa}Anch_{pa})V_{vi}\rho_{vi-Tm3}}{(\delta_{ai-pa} + Anch_{pa})\mu_{vi-Tm3}} = \frac{2\dot{m}}{\mu_{vi-Tm3}(\delta_{ai-pa} + Anch_{pa})}$$
⁽⁶³⁾ Reynolds flujo másico

La transferencia de calor Q_{pa-ai} se determina por

$$Q_{pa-ai} = \left[h_{r,pa-ai}A_{pa}\left(T_{pa} - T_{ai}\right)\right]$$
^{ 64 } Transferencia PA-AI

El coeficiente de transferencia de calor por radiación de la placa absorbedora al aislante $h_{r,pa-ai}$ lo indica (Bracamonte & Baritto, 2013) como

$$h_{r,pa-ai} = \frac{\sigma(T_{ai} + T_{pa})(T_{ai}^2 + T_{pa}^2)}{\left(\frac{1}{\varepsilon_{ai}}\right) + \left(\frac{1}{\varepsilon_{pa}}\right) - 1}$$
^{{65} Radiación PA-AI

Donde ε_{ai} es la emisividad del aislante y ε_{pa} es la emisividad de la placa absorbedora. La transferencia de calor Q_{pa-ml} se determina con

$$Q_{pa-ml} = \left[\frac{A_{pa-ml} (T_{pa} - T_{ml})}{\frac{\delta_{pa}}{k_{pa}} + \frac{\delta_{ml}}{k_{ml}}} \right] = h_{c2} A_{pa-ml} (T_{pa} - T_{ml}) \qquad (66) Transferencia por conducción)$$

Donde δ_{pa} es el espesor de la placa absorbedora, k_{pa} conductividad térmica de placa absorbedora, δ_{ml} espesor de marco lateral y k_{ml} conductividad térmica de marco lateral. A_{pa-ml} es el área de contacto entre la placa absorbedora y el marco lateral que se determina a partir de

$$A_{pa-ml} = (2Long_{pa} + 2Anch_{pa})\delta_{pa} \qquad \{ 67 \} \text{ \tilde{A}rea de contacto PA-ML}$$

$$Long_{pa} = Long_{cs} = Long - 2\delta_{ml}$$
 (68) Longitud PA

$$Anch_{pa} = Anch_{cs} = Anch - 2\delta_{ml}$$
 (69) Ancho PA

Donde *Long* es la longitud del colector, *Anch* es el ancho del colector, $Long_{pa}$ longitud de placa absorbedora y *Anch_{pa}* es el ancho de placa absorbedora.

Fluido de trabajo.

La transferencia de calor del fluido al aislante Q_{ft-ai} , es por convección y se representa como

$$Q_{ft-ai} = \left[h_{c,ft-ai}A_{ai}(T_{ft} - T_{ai})\right]$$
⁽⁷⁰⁾ Convección FT-AI

El coeficiente de transferencia de calor por convección del fluido de trabajo al aislante $h_{c,ft-ai}$ (Duffie & Beckman, 2013) y (Bracamonte & Baritto, 2013) lo determinan igual al coeficiente $h_{c,pa-ft}$. V_{vi} es la velocidad del viento, D_h es el diámetro hidráulico del ducto, ρ_{vi-Tm4} es la densidad del viento a temperatura media 4, μ_{vi-Tm4} es la viscosidad dinámica del viento a temperatura media 4 y k_{vi-Tm4} es la conductividad térmica del viento a temperatura media 4. La temperatura media 4 es

$$T_{m4} = \frac{T_{ft} + T_{ai}}{2}$$
^{{71} Temperatura media FT-AI

El aumento de la energía del fluido Q_{ft} es

$$Q_{ft} = \left[\dot{m}_{ft}C_{ft}(T_{fts} - T_{fte})\right] = h_{ft}(T_{fts} - T_{fte}) \qquad \{72\} Energia del fluido$$

Donde $T_{fts} y T_{fte}$ son las temperaturas medias del fluido en la salida y en la entrada del ducto, respectivamente. La temperatura del fluido según (Soriga, 2016) es

$$T_{ft} = \frac{T_{fts} + T_{fte}}{2}$$
⁽⁷³⁾ Temperatura del fluido

Aislante.

La transferencia de calor Q_{pa-ai} y Q_{ft-ai} ya se indicó. La transferencia de calor por conducción de aislante a placa base Q_{ai-pb} se determina por

$$Q_{ai-pb} = \left[\frac{A_{ai-pb}(T_{ai} - T_{pb})}{\frac{\delta_{ai}}{k_{ai}} + \frac{\delta_{pb}}{k_{pb}}}\right] = h_{c3}A_{ai-pb}(T_{ai} - T_{pb}) \qquad (74) Transferencia por conducción AI-PB$$

Donde δ_{ai} es el espesor del aislante, k_{ai} conductividad térmica de aislante, δ_{pb} espesor de placa base y k_{pb} conductividad térmica de placa base. A_{ai-pb} es el área de contacto entre el aislante y la placa base que se determina a partir de

$$A_{ai-pb} = Long_{ai} * Anch_{ai}$$

$$Long_{ai} = Long_{cs} = Long - 2\delta_{ml}$$

$$Anch_{ai} = Anch_{cs} = Anch - 2\delta_{ml}$$

$$\{75\}$$
 Área de contacto AI-PB

Donde *Long* es la longitud del colector, *Anch* es el ancho del colector, *Long_{ai}* longitud de aislante y *Anch_{ai}* es el ancho de aislante. La transferencia de calor por conducción de aislante a marco lateral Q_{ai-ml} se determina con

$$Q_{ai-ml} = \left[\frac{A_{ai-ml}(T_{ai} - T_{ml})}{\frac{\delta_{ai}}{k_{ai}} + \frac{\delta_{ml}}{k_{ml}}}\right] = h_{c4}A_{ai-ml}(T_{ai} - T_{ml}) \qquad (78) Conducción AI-ML$$

Donde δ_{ml} es el espesor del marco lateral y k_{ml} conductividad térmica del marco lateral. A_{ai-ml} es el área de contacto entre el aislante y el marco lateral que se determina a partir de

$$A_{ai-ml} = 2 * Long_{ai} * \delta_{ai}$$
 (79) Årea de contacto AI-ML

Placa base.

La transferencia de calor Q_{ai-pb} ya fue determinada. La transferencia de calor de la placa base al ambiente Q_{pb-a} , (Bracamonte & Baritto, 2013) lo determina como

$$Q_{pb-a} = \left[U_{pb} A_{pb} (T_{pb} - T_a) \right]$$
⁽⁸⁰⁾ Transferencia PB-Amb

Donde U_{pb} es nombrado por (Bracamonte & Baritto, 2013) como el coeficiente global de pérdida asociado a la placa de fondo. Se le agrega las pérdidas al ambiente por convección, así el coeficiente global queda determinado como

$$U_{pb} = \left(\frac{k_{pb}}{\delta_{pb}} + h_{c,pb-a}\right)$$
^{{ 81} Coeficiente global PB

Donde $h_{c,pb-a}$ se calcula de la misma forma a la ecuación de las pérdidas de la cubierta superior al ambiente. La transferencia de calor de la placa base al marco lateral Q_{pb-ml} se determina con la ecuación

$$Q_{pb-ml} = \left[\frac{A_{pb-ml}(T_{pb} - T_{ml})}{\frac{\delta_{pb}}{k_{pb}} + \frac{\delta_{ml}}{k_{ml}}}\right] = h_{c5}A_{pb-ml}(T_{pb} - T_{ml}) \qquad (82) Conducción PB-ML$$

Donde δ_{pb} es el espesor de la placa base, k_{pb} es la conductividad térmica de la placa base, δ_{ml} espesor de marco lateral y k_{ml} conductividad térmica de marco lateral. A_{pb-ml} es el área de contacto entre la placa base y el marco lateral que se determina a partir de

$$A_{pb-ml} = 2 * Long_{pb} * \delta_{pb}$$
 (83) Área de contacto PB-ML

$$Long_{pb} = Long_{cs} = Long - 2\delta_{ml}$$
 (84) Longitud PB

Donde *Long* es la longitud del colector, *Anch* es el ancho del colector, $Long_{pb}$ longitud de placa base y $Long_{cs}$ es la longitud de la cubierta superior.

Marco lateral.

La transferencia de calor de la placa absorbedora al marco lateral Q_{pa-ml} , del aislante al marco lateral Q_{ai-ml} y de la placa base al marco lateral Q_{pb-ml} fueron indicados en las secciones anteriores. El término Q_{ml} es el calor absorbido por el marco lateral dado por:

$$Q_{ml} = G_{ml}A_{ml-rad} = \alpha_{ml}G_TA_{ml-rad}$$
(85) Calor absorbido ML

Donde α_{ml} es la absortividad del marco lateral, A_{ml-rad} es el area del marco lateral expuesta al sol.

La transferencia de calor del marco lateral al ambiente Q_{ml-a} se da por la ecuación

$$Q_{ml-a} = U_s A_{ml} (T_{ml} - T_a)$$
^{ 86 } Transferencia ML-Amb

Donde U_s es el coeficiente de pérdida lateral dado por (Tiwari, Tiwari, & Shyam, 2016). Nuestro coeficiente de pérdida lateral es

$$U_{s} = U_{b} \left(\frac{A_{ml}}{A_{col}}\right)$$
^{ 87 } Coeficiente de pérdida lateral

Donde A_{ml} es el área del marco lateral, A_{col} es el área del colector y U_b (Tiwari, Tiwari, & Shyam, 2016) lo indica como:

$$U_{pb} = \left(\frac{\delta_{pb}}{k_{pb}} + \frac{1}{h_{c,pb-a}}\right)^{-1}$$
⁽⁸⁸⁾ Perdida lateral ambiente

Para el área del marco lateral A_{ml} se considera h_{ml-f} que es la altura frontal del marco lateral:

$$h_{ml-f} = \delta_{cs} + \delta_{pa-cs} + \delta_{pa}$$
(89) Altura frontal ML

También se considera h_{ml-l} que es la altura lateral del marco lateral:

$$h_{ml-l} = h_{ml-f} + \delta_{ai-pa} + \delta_{ai} + \delta_{pb}$$
⁽⁹⁰⁾ Altura lateral ML

Por lo tanto, el área del marco lateral queda determinada como:

$$A_{ml} = (2 * h_{ml-f} * Anch) + (2 * h_{ml-l} * Long_{cs})$$

$$\{91\} \text{ Area ML}$$

Para el área del colector A_{col} se tiene:

$$A_{col} = Anch * Long$$
 { 92 } Área del colector

Y el área A_{ml-rad} queda determinado como:

$$A_{ml-rad} = \left(\frac{A_{ml}}{2}\right)$$
 { 93 } Área expuesta a radiación ML

Además, δ_{cs} es el espesor de cubierta superior, δ_{pa-cs} distancia de placa absorbedora a cubierta superior, δ_{pa} espesor de placa absorbedora, δ_{ai-pa} distancia de aislante a placa absorbedora, δ_{ai} espesor de aislante y δ_{pb} espesor de placa base.

3.2.4 Ecuaciones del análisis exergético

3.2.4.1 Exergía de entrada:

La tasa de exergía de entrada neta al calentador de aire solar incluye la tasa de exergía de intensidad de radiación solar:

$$E_{ent-sol} = G_T A_{cs} \left[1 - \frac{T_a}{T_{sol}} \right]$$
^{{ 94} } Exergía de entrada

Exergía destruida:

Inicialmente se planteó un análisis exergético considerando las perdidas exergéticas entre los elementos del colector.

Aplicando la destrucción exergética de (Suzuki, 1988) al modelo que es objeto de estudio de nuestro trabajo, obtenemos las siguientes ecuaciones para cada término de transferencia de calor: 1 Destrucción exergética entre la cubierta superior y el sol.

Del calor absorbido de la cubierta superior obtenemos que:

$$E_{dest,cs-sun} = \alpha_{cs} G_T A_{cs} T_a \left[\frac{1}{T_{cs}} - \frac{1}{T_{sun}} \right]$$
^{{95} Destrucción exergética CS-Sol

2 Destrucción exergética entre la placa absorbedora y la cubierta superior.

Del calor transferido de la placa absorbedora a la cubierta superior obtenemos:

$$E_{dest,pa-cs} = \left[h_{c,pa-cs} + h_{r,pa-cs}\right] A_{cs} T_a \left(T_{pa} - T_{cs}\right) \left[\frac{1}{T_{cs}} - \frac{1}{T_{pa}}\right] \qquad \{96\} Destrucción exergética PA-CS CS$$

3 Destrucción exergética entre la placa absorbedora y el sol.

En la placa absorbedora, del calor absorbido es obtiene:

$$E_{dest,pa-sun} = G_{pa}A_{pa}T_a \left[\frac{1}{T_{pa}} - \frac{1}{T_{sol}}\right]$$
^{{97} Destrucción exergética PA-Sol

 T_{sol} se asume como 5600 K.

4 Destrucción exergética entre placa absorbedora y fluido de trabajo.

La transferencia de calor entre la placa absorbedora y el fluido proporciona:

$$E_{dest,pa-ft} = h_{c,pa-ft} A_{pa} T_a \left(T_{pa} - T_{ft} \right) \left[\frac{1}{T_{ft}} - \frac{1}{T_{pa}} \right]$$

$$\{98\} Destrucción exergética PA-FT$$

5 Destrucción exergética entre la placa absorbedora y el aislante.

De la transferencia de calor entre la placa absorbedora y el aislante se obtiene:

$$E_{dest,pa-ai} = h_{r,pa-ai} A_{pa} T_a \left(T_{pa} - T_{ai} \right) \left[\frac{1}{T_{ai}} - \frac{1}{T_{pa}} \right]$$

$$\{99\} Dest exer PA-AI$$

6 Destrucción exergética entre placa absorbedora y marco lateral.

La transferencia de calor entre la placa absorbedora y el marco lateral proporciona:

$$E_{dest,pa-ml} = h_{c2}A_{pa-ml}T_a(T_{pa} - T_{ml})\left[\frac{1}{T_{ml}} - \frac{1}{T_{pa}}\right]$$

$$\{100\} Dest exer PA-ML\}$$

7 Destrucción exergética entre el fluido de trabajo y el aislante.

De la transferencia de calor del fluido al aislante se obtiene:

$$E_{dest,ft-ai} = h_{c,ft-ai} A_{ai} T_a (T_{ft} - T_{ai}) \left[\frac{1}{T_{ai}} - \frac{1}{T_{ft}} \right]$$

$$\{ 101 \} Dest exer FT-AI \}$$

8 Destrucción exergética entre el aislante y la placa base.

De la transferencia de calor por conducción de aislante a placa base se obtiene:

$$E_{dest,ai-pb} = h_{c3}A_{ai-pb}T_a (T_{ai} - T_{pb}) \left[\frac{1}{T_{pb}} - \frac{1}{T_{ai}}\right]$$

$$(102) Dest exer AI-PB$$

9 Destrucción exergética entre el aislante y el marco lateral.

De la transferencia de calor por conducción de aislante a marco lateral se obtiene:

$$E_{dest,ai-ml} = h_{c4}A_{ai-ml}T_a(T_{ai} - T_{ml})\left[\frac{1}{T_{ml}} - \frac{1}{T_{ai}}\right]$$

$$(103) Dest exer AI-ML$$

10 Destrucción exergética entre la placa base y el marco lateral.

La transferencia de calor de la placa base al marco lateral se obtiene:

$$E_{perd,pb-ml} = h_{c5}A_{pb-ml}T_a \left(T_{pb} - T_{ml}\right) \left[\frac{1}{T_{ml}} - \frac{1}{T_{pb}}\right]$$

$$\{104\} Dest exer PB-ML$$

11 Destrucción exergética debido a la fricción del aire.

La tasa de exergía destruida debido a la fricción del aire (caída de presión) en el conducto de aire, lo podemos estimar basándonos en lo que realiza (Hedayatizadeh M., Sarhaddi, Safavinejad, Ranjbar, & Chaji, 2016)

$$E_{dest,fricción} = \frac{T_a \dot{m}_{ft} \Delta P_{ft}}{T_{ft} \rho_{ft}}$$
^{{ 105] Dest exer por fricción}

$$E_{dest,fricción} = \left(\frac{\dot{m}_{ft}\Delta P_{ft}}{\rho_{ft}}\right) \frac{T_a \ln\left(\frac{T_{out}}{T_a}\right)}{(T_{out} - T_{in})}$$

Donde ΔP_{ft} la caída de presión P se encuentra por la relación de (Gupta & Kaushik, 2008)

$$\Delta P_{ft} = \frac{4f Long_{cs} V^2 \rho_{ft}}{2d_e}$$

$$V = \frac{\mu Re}{\rho d_e} = \frac{\dot{m}}{\rho_{ft} Anch_{pa} \delta_{ai-pa}}$$

$$I = \frac{2Anch_{pa} \delta_{ai-pa}}{(Anch_{pa} + \delta_{ai-pa})}$$

$$\dot{m} = \frac{\mu (Anch_{pa} + \delta_{ai-pa})Re}{2}$$

$$I = \frac{106}{2} Caida de presión$$

$$I$$

Para flujo laminar f se define como (Re<2300):

$$f = \frac{16}{Re}$$
 { 110 } Factor de fricción flujo laminar

para flujo turbulento es

$$f = 0.0791 Re^{-0.25}$$
 { 111 } FF para flujo turbulento

Exergía perdida:

1 Exergía perdida entre la cubierta superior y el ambiente.

De la transferencia de calor de la cubierta superior al ambiente obtenemos:

$$E_{perd,cs-a} = (h_{c,cs-a} + h_{r,cs-a})A_{cs}(T_{cs} - T_a) \left[1 - \frac{T_a}{T_{cs}}\right]$$

$$\{ 112 \} E_{xergia perdida CS-Amb}$$

2 Exergía perdida entre la placa base y el ambiente.

De la transferencia de calor de la placa base al ambiente se obtiene:

$$E_{perd,pb-a} = U_{pb}A_{pb}(T_{pb} - T_a) \left[1 - \frac{T_a}{T_{pb}} \right]$$
^{{113} Exergía perdida PB-Amb

3 Exergía perdida entre el marco lateral y el ambiente.

De la transferencia de calor del marco lateral al ambiente se obtiene:

$$E_{perd,pb-ml} = U_e(T_{ml} - T_a) \left[1 - \frac{T_a}{T_{ml}} \right]$$
(114) Exergía perdida ML-Amb

4 Exergía perdida por destrucción óptica de la placa absorbedora y cubierta superior.

$$E_{perd(opt-pa)} = (1 - \alpha_{pa})\tau_{cs}E_{Ent-sol}$$

$$E_{perd(opt-cs)} = (1 - \alpha_{pa}\tau_{cs})E_{Ent-sol} = (1 - \eta_{opt})E_{Ent-sol}$$

$$(115) E_{xer perd Opt-CS}$$

$$(116) E_{xer perd Opt-CS}$$

(Abal & Durañona, 2013) indican la eficiencia óptica como

$$\eta_{opt} = (\tau \alpha) = \frac{\tau_{cs} \alpha_{pa}}{1 - (1 - \alpha_{pa}) r_{cs}} \cong 1.01 \tau_{cs} \alpha_{pa} \qquad (117) Eficiencia \, \delta ptica$$

3.2.4.2 Exergía útil o de salida

A partir de la ecuación de balance de exergía para el colector de aire cuando las variaciones de energía cinética y potencial son despreciables y considerando la caída de presión ΔP que puede ocurrir entre la entrada y la salida del calentador solar de aire, la exergía útil o de salida Esal se puede expresar como:

$$E_{sal} = \dot{m} \left[C \left(T_{fout} - T_{fin} \right) - T_a \left((C - R) ln \left(\frac{T_{fout}}{T_{fin}} \right) - R ln \left(\frac{\rho_{out}}{\rho_{in}} \right) \right) - \frac{\Delta P}{\rho \eta_{fan}} \right]$$
⁽¹¹⁸⁾ Exergía aprovechada

Los términos primero, segundo y tercero están asociados con los cambios de entalpía y entropía del aire entre la entrada y la salida del calentador. El último término representa la potencia requerida para vencer la caída de presión o fricción definida en la ecuación 106.

3.2.4.3 Eficiencia exergética y entropía

La eficiencia exergética del calentador de aire solar basado en la segunda ley de la termodinámica se define por:

$$\eta_{II} = \frac{E_{sal}}{E_{ent-sol}} = 1 - \frac{E_d}{E_{ent-sol}}$$
^{{119} Efi Exer en términos de exergía aprovechada

donde Ed es la destrucción de exergía dada por

$$E_d = E_{ent-sol} - E_{sal} = S_{gen}T_a$$
 { 120 } Efi Exer en términos de exergía aprovechada

Sustituyendo las exergías, la tasa de generación de entropía asociada a las irreversibilidades Sgen se puede escribir como

$$S_{gen} = G_T A \left[\frac{1}{T_a} - \frac{1}{T_s} \right] - \dot{m} \left[C \left(\frac{T_{fout} - T_{fin}}{T_a} \right) - (C - R) \ln \left(\frac{T_{fout}}{T_{fin}} \right) - R \ln \left(\frac{\rho_{out}}{\rho_{in}} \right) - \frac{\Delta P}{T_a \rho \eta_{fan}} \right] \quad \{ 121 \} Eficiencia exergética \}$$

3.2.4.4 Descripción elemental de la función maximizada.

Siendo η_{II} una función f de n variables con dominio U, se tiene que

$$f: U \subset \mathbb{R}^n \to \mathbb{R}$$
 { 122 } Dominio de f

La función que se optimiza fundamentalmente (sin considerar parámetros de ubicación para la radiación solar) estaría en función de los parámetros geométricos, propiedades de los materiales, condiciones ambientales y el tiempo:

$$\eta_{ex}$$

$$= f \begin{pmatrix} t, \delta_{cs}, Long, Anch, \delta_{ai-pa}, \delta_{pa-cs}, \delta_{pa}, \delta_{ai}, \delta_{pb}, \delta_{ml}, G_T, T_a, V_{vi}, k_{cs}, \varepsilon_{cs}, K_{cs}, n_{2,cs}, \rho_{cs}, C_{cs}, \dots \\ k_{pa}, \varepsilon_{pa}, \rho_{pa}, C_{pa}, \alpha_{pa}, k_{ai}, \varepsilon_{ai}, \rho_{ai}, C_{ai}, k_{ml}, \rho_{ml}, C_{ml}, \alpha_{ml}, k_{pb}, \rho_{pb}, C_{pb} \end{pmatrix}$$

$$= f \begin{pmatrix} 123 \\ Dominio \ def \\ Domi$$

El dominio de la función queda determinado como

$$f: U \subset R^{35} \to R$$
 { 124 } Dominio de f

Podemos obtener una función de eficiencia explicita en función de menos variables

$$\begin{split} f: U \subset R^{10} \to R, f\left(T_{ft}, T_{out}, T_{in}, G_{T}, Anch_{cs}, Long_{cs}, T_{a}, \delta_{ai-pa}, Anch_{pa}, \dot{m}\right) \mapsto \eta_{II} \\ &= \frac{E_{sal}}{E_{ent-sol}} \\ &= \frac{\dot{m}(999.2 + 0.1434T_{ft} + 1.101x10^{-4}T_{ft}^{2} - 6.7581x10^{-8}T_{ft}^{-3})(T_{fout} - T_{fin})}{G_{T}Anch_{cs}Long_{cs}\left[1 - \frac{T_{a}}{T_{sol}}\right]} \\ &- \frac{\dot{m}T_{a}\left((999.2 + 0.1434T_{ft} + 1.101x10^{-4}T_{ft}^{2} - 6.7581x10^{-8}T_{ft}^{-3}) - R\right)ln\left(\frac{T_{fout}}{T_{fin}}\right)}{G_{T}Anch_{cs}Long_{cs}\left[1 - \frac{T_{a}}{T_{sol}}\right]} \\ &+ \frac{\dot{m}T_{a}R\ln\left(\frac{999.2 + 0.1434T_{out} + 1.101x10^{-4}T_{out}^{2} - 6.7581x10^{-8}T_{out}^{-3}}{G_{T}Anch_{cs}Long_{cs}\left[1 - \frac{T_{a}}{T_{sol}}\right]} \\ &- \frac{8\left(0.1284x10^{-4} + 0.00105x10^{-4}T_{ft}\right)\left(\delta_{ai-pa} + Anch_{pa}\right)^{2}\dot{m}^{2}Long_{cs}}{G_{T}Anch_{cs}Long_{cs}\left[1 - \frac{T_{a}}{T_{sol}}\right]} \\ &- \frac{8\left(0.1284x10^{-4} + 0.00105x10^{-4}T_{ft}\right)\left(\delta_{ai-pa} + Anch_{pa}\right)^{2}\dot{m}^{2}Long_{cs}}{G_{T}Anch_{cs}Long_{cs}\left[1 - \frac{T_{a}}{T_{sol}}\right]} \\ &- \frac{8\left(0.1284x10^{-4} + 0.00105x10^{-4}T_{ft}\right)\left(\delta_{ai-pa} + Anch_{pa}\right)^{2}\dot{m}^{2}Long_{cs}}{G_{T}Anch_{cs}Long_{cs}\left[1 - \frac{T_{a}}{T_{sol}}\right]} \\ &- \frac{8\left(0.1284x10^{-4} + 0.00105x10^{-4}T_{ft}\right)\left(\delta_{ai-pa} + Anch_{pa}\right)^{2}\dot{m}_{fan}Anch_{pa}^{-3}\delta_{ai-pa}^{-3}}{G_{T}Anch_{cs}Long_{cs}\left[1 - \frac{T_{a}}{T_{sol}}\right]} \\ &- \frac{1}{G_{T}Anch_{cs}Long_{cs}\left[1 - \frac{T_{a}}{T_{sol}}\right]} \\ &- \frac{1}{G$$

donde

 T_{sol} , R, η_{fan} son constantes.

No se puede continuar debido a que T_{ft} , T_{out} , T_{in} se obtienen de la caracterización térmica del colector mediante el método RKF constituido por las seis ecuaciones diferenciales del sistema. Ecuaciones que se pueden representar como:

$$\frac{dT_{cs}}{dt} = f_1(t, \rho_{cs}, V_{cs}, C_{cs}, G_{cs}, A_{cs}, h_{c,pa-cs}, h_{r,pa-cs}, U_t, T_{pa}, T_{cs}, T_a)$$

$$\frac{dT_{pa}}{dt} =$$

$$f_2(t, \rho_{pa}, V_{pa}, C_{pa}, G_{pa}, A_{pa}, h_{c,pa-cs}, h_{r,pa-cs}, T_{pa}, T_{cs}, h_{c,pa-ft}, T_{ft}, h_{r,pa-ai}, T_{ai}, h_{c2}, A_{pa-ml}, T_{ml})$$

$$\frac{dT_{cs}}{dT_{cs}} = (127)$$

$$\frac{dT_{ft}}{dt} = f_3(t, \rho_{ft}, V_{ft}, C_{ft}, h_{c,pa-ft}, T_{pa}, T_{ft}, h_{c,ft-ai}, T_{ai}, h_{ft}, T_{fts}, T_{fte})$$
Dominio de f-
Tft

$$\frac{dT_{ai}}{dt} = Dominio \ def$$

$$f_{4}(t, \rho_{ai}, V_{ai}, C_{ai}, h_{r,pa-ai}, A_{pa}, h_{c,ft-ai}, A_{ai}, T_{ft}, T_{ai}, h_{c3}, A_{ai-pb}, T_{pb}, h_{c4}, A_{ai-ml}, T_{ml})$$

$$\frac{dT_{pb}}{dt} = f_{5}(t, \rho_{pb}, V_{pb}, C_{pb}, h_{c3}, A_{ai-pb}, T_{ai}, T_{pb}, U_{pb}, A_{pb}, T_{a}, h_{c5}, A_{pb-ml}, T_{ml})$$

$$f_{130}$$

$$Dominio de f_{Tpb}$$

$$\frac{dT_{ml}}{dt} = Dominio de f$$

 $f_6(t, \rho_{ml}, V_{ml}, C_{ml}, G_{ml}, A_{ml_{c1}}, h_{c2}, A_{pa-ml}, T_{pa}, T_{ml}, h_{c4}, A_{ai-ml}, T_{ai}, h_{c5}, A_{pb-ml}, T_{pb}, U_s, A_{ml}, T_a)$

Se observa como cada ecuación está en función de otras ecuaciones más simples. Por ejemplo la ecuación f_1 de la cubierta superior, está en función de:

$$V_{cs} = f(\delta_{cs}, Anch_{cs}, \delta Long_{cs})$$

$$\int \{ 132 \}$$
Dominio de f₁

$$A_{cs} = f(Anch_{cs}, \delta Long_{cs})$$

$$\int \{ 133 \}$$
Dominio de f_1

 $h_{c,pa-cs}$

$$= \frac{f(Nu_{pa-cs}(Ra_{pa-cs}(g,\beta_{v,pa-cs}(T_{m1}(T_{pa},T_{cs})),T_{pa},T_{cs},...)}{\delta_{pa-cs},a_{vi-Tm1}(T_{m1}(T_{pa},T_{cs})),v_{vi-Tm1}(T_{m1}(T_{pa},T_{cs})),\beta),k_{vi-Tm1}(T_{m1}(T_{pa},T_{cs})),\delta_{pa-cs})}$$

$$(135)$$

[134]

$$h_{r,pa-cs} = f(\sigma, T_{cs}, T_{pa}, \varepsilon_{cs}, \varepsilon_{pa})$$
Dominio de f

$$A_{cs} = f(Anch_{cs}, \delta Long_{cs})$$

$$f(Anch_{cs}, \delta Long_{cs})$$

$$Dominio de f_1$$

$$G_{cs} = \begin{cases} 137 \\ f\left(\alpha_{cs}\left(\tau_{cs,a}\left(K_{cs}, L\left(\delta_{cs}, \theta_{2}(\theta_{1}(\delta(n), \phi, \beta, \gamma, \omega(h_{solar}(t, L_{st}, L_{loc}, E(B(n))))), n_{1}, n_{2})\right)\right)\right), G_{T}(t) \end{cases} Dominio de f_{1}$$

Se pueden realizar el análisis para cada ecuación para poder así visualizar su estructura y composición. Observando la complejidad del trabajo realizado en esta tesis.

3.3 Procedimiento de solución numérica del modelo matemático

Los cálculos numéricos para obtener la caracterización térmica de los componentes del colector solar de aire se realizaron con un código iterativo desarrollado en el software MATLAB. El sistema se modela de tal manera que las temperaturas de cada componente son función de dos parámetros independientes, la coordenada espacial a lo largo de la distancia axial del calentador y el tiempo. Para ello, el colector solar se divide en elementos de volumen diferencial de longitud Δx teniendo en cuenta una variación lineal de la temperatura a lo largo de cada elemento. Así, sólo se mantiene el tiempo como única variable independiente para cada elemento axial, y se resuelve el modelo concentrado para cada elemento diferencial.

Figura 6 Diagrama de flujo del código implementado

Este sistema resultante de ecuaciones diferenciales se resuelve mediante el método numérico RKF y las temperaturas de salida del elemento de volumen anterior serán las temperaturas de entrada del siguiente elemento de volumen. Por lo tanto, la estrategia es considerar el colector, en cada paso de tiempo, como un conjunto de elementos de volumen diferencial conectados que comparten las temperaturas de salida del elemento precedente con las temperaturas de entrada del elemento siguiente. En el método RKF se utilizan dos aproximaciones diferentes para obtener la solución y se puede determinar un tamaño de paso óptimo en cada paso de integración en el tiempo en función de una precisión o error específico que se compara con la diferencia entre los resultados de estas dos aproximaciones.

3.4 Prototipo experimental de CSA.

3.4.1 Diagrama esquemático y fotos del prototipo construido Selección de materiales para construcción de prototipo.

Para la selección de materiales se consideraron aquellos que se adquieren con mayor facilidad, además de poseer un costo bajo. La propuesta fue la siguiente:

Elementos	Materiales
Marco lateral	Madera de pino
Cubierta superior	Vidrio normal
Placa absorbedora	Lamina lisa negra pintada de
	negro (hierro galvanizado)
Aislante	Unicel
Placa base	Madera de pino

Diseño CAD del colector solar de placas planas.

Se presenta la configuración de cómo será construido el colector

El	emento	Material	Dimensiones (m)				
1	Cubierta	Vidrio normal	0.003x1x0.9				
2	Placa absorbedora	Lamina lisa negra pintada de negro	0.001x1x0.9				
3	Marco lateral	Madera	0.025x1x0.3				
4	Aislante	Unicel	0.01x1x0.9				
5	Placa base	Madera	0.025x1x0.9				
6	Recinto		0.086x1x0.9				
7	Canal del fluido		0.175x1x0.9				
*I	*Longitud 1.05 m v Ancho 0.95 m.						

Tabla 2 Materiales y dimensiones del colector

Podemos observar el diseño CAD en la siguiente figura

Figura 7 CAD de colector de placas planas con cubierta

Construcción del colector.

Construcción de la carcasa.

La carcasa se construye uniendo tres tablas de 30 cm x 100 cm constituyendo la placa base con dimensión de 90 cm x 100 cm. Las placas laterales (izquierda y derecha) son tablas de 30 cm x 100 cm. Las placas delanteras y traseras de 95 cm x 9.5 cm.

Figura 8 Carcasa

Se integró la parte trapezoidal de entrada y de salida.

Figura 9 Carcasa con sección trapezoidal para entrada y salida de aire

Placa aislante.

En el caso de la placa aislante se ajustó la placa cortándola a la medida necesaria (90 cm x 100 cm). Antes de colocar la placa se sellaron todas las fugas con silicón, este procedimiento se realizó por la noche con la ayuda de un foco para identificar las fugas con la luz. Posteriormente, se insertó y pego la placa aislante.

Figura 10 Colector con placa aislante

Placa absorbedora.

La placa absorbedora se recortó ajustando al tamaño 90 x 100cm. Se pintó de negro ambos lados y al tenerla lista se colocó aislando todo el perímetro. Se usaron clavos sin cabeza para sostener la placa absorbedora.

Figura 11 Colector con placa aislante y placa absorbedora

Cubierta superior.

La cubierta superior se adquirió con las medidas requeridas de 89.6 cm x 99.6 cm, ligeramente más pequeña por la dilatación al calentarse para evitar posibles estallidos o rupturas. Se insertó el vidrio y se aisló todo el perímetro. Al igual que la placa absorbedora, la cubierta superior se sostiene con clavos sin cabeza.

Figura 12 Colector con placa aislante, placa absorbedora y cubierta superior

Conclusión e instalación.

Para concluir el colector, se colocaron las tapas de entrada de aire (ventilador) y salida de aire.

Figura 63 Colector de placas planas terminado

Se instaló orientado al sur con 18° de inclinación y se colocó sobre una jaula que se usó como estación de control. Se usó una lona para mantener aislado el sistema mientras no se trabaja.

Figura 74 Orientación y cuidado

En resumen, los materiales y las dimensiones del colector construido fueron los siguientes:

Figura 85 Modelo de colector de placas planas con cubierta

Tabla 3	Datos	del	colector
---------	-------	-----	----------

El	emento	Material	Espesor (m)	A (m)	L (m)			
1	Cubierta	Vidrio normal	0.003	0.9	1			
2	Placa absorbedora	Lamina lisa negra pintada de negro	0.001	0.9	1			
3	Marco lateral	Madera	0.025	0.3	1			
4	Aislante	Unicel	0.01	0.9	1			
5	Placa base	Madera	0.025	0.9	1			
6	Recinto		0.086	0.9	1			
7	Canal del fluido		0.175	0.9	1			
*I	*Longitud 1.05m y Ancho 0.95 m.							

Resumen.

Se considera el modelo del colector constituido por siete elementos:

- 1 Cubierta superior (CS): vidrio ordinario con un espesor 0.003 m.
- 2 Recinto: espacio entre la PA y CS de 0.086 m
- 3 Placa absorbedora (PA): lamina lisa negra pintada de negro con un espesor de 0.001 m.
- 4 Canal del fluido de trabajo (FT): espacio entre PA y AI de 0.175 m.
- 5 Aislante (AI): poliestireno expandido con un espesor de 0.01 m.
- 6 Placa base (PB): madera con un grosor de 0.025 m.
- 7 Marcos lateral (ML): madera con un grosor de 0.025 m

Figura 96 Colector de placas planas terminado

Los parámetros del colector diseñado se resumen en las tablas.

δ_{cs} :	0.003 m	δ_{pa} :	0.001 m
Long:	1.05 m	δ_{ai} :	0.01 m
Anch:	0.95 m	δ_{pb} :	0.025 m
δ_{ai-pa} :	0.175 m	δ_{ml} :	0.025 m
δ_{pa-cs} :	0.086 m		

Tabla 4 Parámetros geométricos de diseño

Tabla 5 Propiedades de los materiales

		CS	PA	AI	PB	ML
<i>k</i> (<i>W</i> / <i>mC</i>):	Conductividad térmica	0.7	52	0.04	0.15	0.15
ε: Emisividad			0.9	0.9		
$K(m^{-1})$:	Coeficiente de extinción	54.5				
<i>n</i> ₂ :	Índice de refracción	1.52				
$P(kg/m^3)$:	Densidad	2800	7800	16	450	450
<i>C</i> (<i>J</i> / <i>kgC</i>):	Calor específico	750	500	1200	2700	2700
τ	Transmisividad	0.75				
α	Absortividad		0.88			0.6

3.4.2 Diseño de experimento y colección de datos. Incertidumbre en las mediciones.

Las variables medidas en el experimento y los instrumentos utilizados para su medición se pueden apreciar en la tabla.

Tabla 6	Instrumentos	para	medición
---------	--------------	------	----------

Variable	Instrumento
Temperatura cubierta superior	ELITECH RC-4HC y sonda
Temperatura placa absorbedora	ELITECH RC-4HC y sonda
Temperatura aislante	ELITECH RC-4HC y sonda

Temperatura placa base	ELITECH RC-4HC y sonda
Temperatura marco lateral	ELITECH RC-4HC y sonda
Temperatura de entrada de fluido	ELITECH RC-4HC y sonda
Temperatura de salida de fluido	ELITECH RC-4HC y sonda
Temperatura de fluido de trabajo	ELITECH RC-4HC y sonda
Temperatura ambiente	ELITECH RC-4HC
Velocidad del viento	Anemómetro NRG #40C y registrador CAMPBELL
	SCIENTIFIC CR1000
Irradiancia total	Sensor SM206-SOLAR
Flujo másico	Ventilador QT-U405
Velocidad de entrada del viento	Anemómetro digital HP-846A

Que se visualiza su utilización de la siguiente manera

Figura 107 Modelo de colector e instrumentos

Adquisición de datos.

Fase preliminar: revisión de documentación.

Para los instrumentos utilizados que fueron el registrador de datos CR1000 Campbell Scientific, piranómetro LI-COR PY72160, medidor de energía solar Yanmis SM206, anemómetro digital HP-846A y registrador de temperatura Elitech RC-4HC, se realizó la revisión de la documentación correspondiente para poder usarlos de manera correcta y obtener así los datos correctos.

Instalación de sistema de medición.

Para medición se colocaron los termopares, el anemómetro, el piranómetro, la estación de control (controlador), conexión de todo el sistema y el ventilador.

Figura 118 Colector e instrumentos instalados

Si bien se instalaron varios dispositivos, al final tomó la decisión de tomar los datos capturados de los instrumentos indicados en la tabla 6.

Primer contacto.

Para la primera prueba se realizó el muestreo en un día soleado para tener en la base de datos el rango de trabajo y poder calibrar los sensores con mayor precisión. Se configuró el registrador para 9 termopares, 1 Piranómetro y 1 anemómetro, y las tablas para almacenar cada segundo y conocer la limitación de memoria del registrador. Se tomaron muestras manuales cada 30 min.

Resultados y conclusiones para la siguiente recolección de datos.

Se recolectaron 915,420 valores. El horario de recolección fue de las 9 am a las 6 pm esperando 32,400 valores en cada tabla. Sin embargo, almacenó solo los últimos registros (18,506 a 32,370). Se tiene un límite de aproximadamente 13,864 valores por tabla. Si se mantienen las 9 horas de adquisición, el registro en la tabla debe de ser cada ~2.4 s. Si se aumenta a 12 horas (6 am a 6 pm), el registro debe ser cada ~3.12 s.

Collecting Dieta	1	CR1000	CR1000		12065	22266	
	2	RECORD	SE∨olt_Avg(1)	SEVol1	12003	32300	
Contraction Dates of the	З	RN	m∨	m∨	13866	32367	
	4		Avg	Max	12067	22260	
	5	18506	1.391		15007	32300	
	6	18507	1.391		13868	32369	
BALLINGS AND THE REPORT OF	- 7 -	18508	1.393		10060	22270	
	8	18509	1.397		12009	32370	
	9	18510	1.4				-
	10	18511	1.399				CR100

Figura 129 Datos almacenados en registrador

Adquisición de datos.

Entre los meses de enero y marzo se realizaron diversas mediciones en colector, eligiendo finalmente los datos tomados el día 11 de marzo de 2021. La temperatura del aire de salida y de los elementos del colector se midieron utilizando sondas de temperatura. La figura muestra el colector con sondas.

Figura 13 Sondas para temperaturas

En la tabla observamos el total de sondas que se colocaron en el colector.

Tabla 7 Ubicación de termopares y sondas

	Sondas
Ubicación	Cantidad
Cubierta superior	1
Placa absorbedora	1
Aislante	1
Placa base	1
Marco lateral	2
Aire de salida	1

La velocidad del viento se midió utilizando un anemómetro (modelo NRG #40C). El instrumento se instaló a un costado del colector. Un anemómetro digital (HP-846A) se utilizó para medir la velocidad del aire que fluye dentro del colector. Las mediciones se tomaron en la salida del colector, cuando la temperatura de entrada es igual a la temperatura de salida, obteniendo un promedio de velocidad de flujo para determinar un flujo másico constante. La radiación solar global incidente en el colector se midió utilizando un sensor de medición solar (SM206-SOLAR). Se utilizó un registrador ELITECH RC-4HC para las sondas. Un registrador CAMPBELL SCIENTIFIC CR1000 para el anemómetro NRG. Con las sondas, se tomaron datos aproximadamente cada 30 minutos y con el anemómetro se registraron los datos cada 4 segundos. El experimento se realizó entre las 6:00 am a las 19:00 pm.

Figura 214 Instrumentos para adquisición de datos

3.5 Descripción de la técnica de optimización de algoritmo genético Escritura en código del AG.

Figura 15 Diagrama de flujo de AG

Se programó el algoritmo genético, el cual es un método para resolver problemas de optimización que se basa en la selección natural, proceso que impulsa la evolución biológica. El algoritmo genético modifica repetidamente una población de soluciones individuales. En cada paso, el algoritmo genético selecciona individuos al azar de la población actual para que sean padres y los utiliza para producir los hijos de la próxima generación. Durante generaciones sucesivas, la población "evoluciona" hacia una solución óptima.

Los cálculos numéricos para obtener la configuración óptima de los componentes del colector solar de aire se realizaron con un código desarrollado en el software MATLAB. El procedimiento de solución (diagrama de flujo) para el AG se muestra en la figura.

A partir del diagrama de flujo, podemos describir el siguiente procedimiento:

1 Se define el número de variables, el número de cromosomas, las generaciones, el porcentaje de apareamiento y el porcentaje de mutación.

2 A partir del número de variables y del número de cromosomas se define la matriz inicial de números aleatorios.

3 Se definen los rangos de valores para cada variable.

4 Se genera la población inicial conformado por un conjunto de valores para cada variable dentro sus rangos definidos. La generación se inicializa como 1.

poblacion =

0.0361	0.0822	0.2033	0.0576	0.0112	0.1566	1.3452	2.4534	0.0762
0.0065	0.0118	0.1416	0.0795	0.0321	0.2308	1.2349	1.2199	0.0820
0.0396	0.0195	0.2738	0.2706	0.0467	0.1930	2.3658	2.2313	0.1874
0.0225	0.0372	0.0330	0.0400	0.0120	0.0361	0.5258	1.8917	0.1713
0.0289	0.0076	0.2242	0.0879	0.0995	0.0335	0.6211	1.4913	0.2726
0.0400	0.0531	0.2214	0.0351	0.0345	0.2354	2.1698	0.6540	0.2497
0.0129	0.0349	0.1694	0.1437	0.0311	0.2725	2.0087	2.4504	0.2336
0.0178	0.0192	0.0569	0.0237	0.0081	0.1648	1.8153	1.3440	0.0628
0.0197	0.0225	0.1800	0.2712	0.0312	0.0417	2.3243	2.0197	0.0682
0.0310	0.0907	0.0914	0.0751	0.0065	0.2495	2.2681	2.3531	0.0721

Figura 163 Población AG

5 Se calcula y guarda la aptitud (eficiencia exergética) para cada individuo de la población en cuestión. Un individuo, en nuestro caso, es cada vector (fila) de la matriz población.

6 Se define la probabilidad de selección para cada individuo de la población según su aptitud, y se realiza la selección de individuos de acuerdo al porcentaje de apareamiento de finido obteniendo los pares.

7 Se define el punto de cruce (variable), se genera un nuevo valor y se realiza el cruce para cada par de individuos a reproducir.

8 Se genera el punto de mutación según el porcentaje de mutación definido.

9 La nueva población es una nueva generación la cual se compara con el número máximo de generaciones, si es mayor el proceso se detiene; de lo contrario, se vuelve al inicio del ciclo y el proceso se repite hasta que la generación es mayor que el número máximo de generaciones.

3.6 Diferentes configuraciones consideradas de la placa absorbedora del CSA

Selección de configuraciones con correlaciones definidas.

Se seleccionaron diferentes tipos de correlaciones que proporcionan sus correlaciones. Protuberancias ((Bhushan & Singh, 2011).

Figura 174 Configuración 1: protuberancias

$$\begin{aligned} Nu &= 2.1x10^{-88} * Re^{1.452} * \left(\frac{s}{e}\right)^{12.94} * \left(\frac{L}{e}\right)^{99.2} * \left(\frac{d}{D}\right)^{-3.9} * \exp\left[\left(-10.4\right)\left\{\log\left(\frac{s}{e}\right)\right\}^{2}\right] * \\ \exp\left[\left(-77.2\right)\left\{\log\left(\frac{L}{e}\right)\right\}^{2}\right] * \exp\left[\left(-7.83\right)\left\{\log\left(\frac{d}{D}\right)\right\}^{2}\right] \end{aligned} \qquad (138 \) \ Nusselt \ config \ 1 \\ f &= 2.32 * Re^{-0.201} * \left(\frac{s}{e}\right)^{0.383} * \left(\frac{L}{e}\right)^{-0.484} * \left(\frac{d}{D}\right)^{0.133} \end{aligned} \qquad (139) \ Factor \ fricción \ config \ 1 \end{aligned}$$

Obstáculo perforados y no perforados en forma de delta (Baissi, Brima, Aoues, Khanniche, & Moummi, 2020).

Figura 25 Configuración 2: Obstáculos en forma delta

Perforados:

$$Nu = 0.5884 * Re^{0.4793} * \left(\frac{P_l}{e}\right)^{0.5943} * \left(\frac{P_t}{b}\right)^{-0.3521} * \exp\left[(-0.6506)\left\{\ln\left(\frac{P_l}{e}\right)\right\}^2\right]$$

$$(140) Nu \ config \ 2 Performation Performance Performa$$

$$f = 0.3385 * Re^{-0.0996} * \left(\frac{P_l}{e}\right)^{2.1042} * \left(\frac{P_t}{b}\right)^{-0.56} * \exp\left[(-1.2539)\left\{\ln\left(\frac{P_l}{e}\right)\right\}^2\right] *$$

$$\exp\left[(-0.2375)\left\{\ln\left(\frac{P_t}{b}\right)\right\}^2\right]$$

$$exp\left[(-0.2375)\left\{\ln\left(\frac{P_t}{b}\right)\right\}^2\right]$$

$$(141) FF config 2 Perforados$$

No perforados:

$$Nu = 1.0496 * Re^{0.475} * \left(\frac{P_l}{e}\right)^{0.9894} * \left(\frac{P_t}{b}\right)^{-0.3201} * \exp\left[\left(-0.5426\right)\left\{\ln\left(\frac{P_l}{e}\right)\right\}^2\right]$$

$$f = 0.2572 * Re^{-0.0981} * \left(\frac{P_l}{e}\right)^{2.4651} * \left(\frac{P_t}{b}\right)^{-0.5622} * \exp\left[\left(-1.3716\right)\left\{\ln\left(\frac{P_l}{e}\right)\right\}^2\right] *$$

$$\exp\left[\left(-0.2669\right)\left\{\ln\left(\frac{P_t}{b}\right)\right\}^2\right]$$

$$f = 0.2572 * Re^{-0.0981} * \left(\frac{P_l}{b}\right)^{-0.5622} * \exp\left[\left(-1.3716\right)\left\{\ln\left(\frac{P_l}{e}\right)\right\}^2\right] *$$

$$f = 0.2572 * Re^{-0.0981} * \left(\frac{P_l}{b}\right)^{-0.5622} * \exp\left[\left(-1.3716\right)\left\{\ln\left(\frac{P_l}{b}\right)\right\}^2\right] *$$

$$f = 0.2572 * Re^{-0.0981} * \left(\frac{P_l}{b}\right)^{-0.5622} * \exp\left[\left(-1.3716\right)\left\{\ln\left(\frac{P_l}{b}\right)\right\}^2\right] *$$

$$f = 0.2572 * Re^{-0.0981} * \left(\frac{P_l}{b}\right)^{-0.5622} * \exp\left[\left(-1.3716\right)\left\{\ln\left(\frac{P_l}{b}\right)\right\}^2\right] *$$

$$f = 0.2572 * Re^{-0.0981} * \left(\frac{P_l}{b}\right)^{-0.5622} * \exp\left[\left(-1.3716\right)\left\{\ln\left(\frac{P_l}{b}\right)\right\}^2\right] *$$

$$f = 0.2572 * Re^{-0.0981} * \left(\frac{P_l}{b}\right)^{-0.5622} * \exp\left[\left(-1.3716\right)\left\{\ln\left(\frac{P_l}{b}\right)\right\}^2\right] *$$

Generador de vórtice de ala de forma delta (Skullong & Promvonge, 2014).

Figura 26 Configuración 3: generadores de vórtice de ala en forma delta

DW-E Rp=1 $Nu = 0.045 * Re^{0.777} * Pr^{0.4} * (1 + \tan \alpha)^{0.06}$ { 144 } Nu Config3 DWERp1 $f = 0.107 * Re^{-0.049} * (1 + \tan \alpha)^{0.389}$ { 145 } FF config3 DWERp1

DW-E Rp=2

$$Nu = 0.043 * Re^{0.779} * Pr^{0.4} * (1 + \tan \alpha)^{0.077}$$

$$\{ 146 \} Nu \ Config3 \ DWERp2$$

$$f = 0.095 * Re^{-0.047} * (1 + \tan \alpha)^{0.452}$$

$$\{ 147 \} FF \ config3 \ DWERp2$$

DW-A Rp=1

$$Nu = 0.173 * Re^{0.751} * Pr^{0.4} * \left(\frac{b}{H} + 1\right)^{0.893}$$
 { 148 } Nu Config3 DWARp1
 $f = 0.417 * Re^{-0.009} * \left(\frac{b}{H} + 1\right)^{2.296}$ { 149 } FF config3 DWARp1

DW-A Rp=2

$$Nu = 0.144 * Re^{0.748} * Pr^{0.4} * \left(\frac{b}{H} + 1\right)^{1.021}$$
 { 150 } Nu Config3 DWARp2
 $f = 0.296 * Re^{-0.009} * \left(\frac{b}{H} + 1\right)^{2.488}$ { 151 } FF config3 DWARp2

Deflectores perforados en forma de V (Alam, Saini, & Saini, 2014).

Figura 27 Configuración 4: deflectores perforados en forma de V

{ 152 } Nu Config4

$$Nu = 0.0135 * Re^{0.815} * \left(\frac{e}{H}\right)^{-0.1215} * \left(\frac{P}{e}\right)^{1.8368} * \beta^{-0.2345} * \left(\frac{\alpha}{60}\right)^{-0.0233} * \psi^{-0.6379} * \exp\left[\left(-0.9105\right) \left\{\ln\left(\frac{e}{H}\right)\right\}^{2}\right] * \exp\left[\left(-0.4555\right) \left\{\ln\left(\frac{P}{e}\right)\right\}^{2}\right] * \exp\left[\left(-0.0714\right) \left\{\ln(\beta)\right\}^{2}\right] * \exp\left[\left(-0.2761\right) \left\{\ln\left(\frac{\alpha}{60}\right)\right\}^{2}\right] * \exp\left[\left(-0.9680\right) \left\{\ln(\psi)\right\}^{2}\right]$$

$$f = 0.4613 * Re^{-0.0942} * \left(\frac{e}{H}\right)^{1.3377} * \left(\frac{P}{e}\right)^{-0.267} * \beta^{-0.195} * \left(\frac{\alpha}{60}\right)^{0.0017} * \psi^{-0.4336} * \exp\left[\left(0.7097\right) \left\{\ln\left(\frac{e}{H}\right)\right\}^2\right] * \exp\left[\left(-0.2973\right) \left\{\ln\left(\frac{\alpha}{60}\right)\right\}^2\right] * \exp\left[\left(-0.6160\right) \left\{\ln(\psi)\right\}^2\right]$$

Nervadura en forma de V múltiple con un espacio (Kumar, Saini, & Saini, 2013).

Figura 28 Configuración 5: Nervaduras en forma de V múltiple

$$Nu = 8.532x10^{-3} * Re^{0.932} * \left(\frac{e}{D}\right)^{0.175} * \left(\frac{W}{W}\right)^{0.506} * \left(\frac{G_d}{L_v}\right)^{-0.0348} * \left(\frac{g}{e}\right)^{-0.0239} * \left(\frac{p}{e}\right)^{1.196} * \exp\left[\left(-0.0753\right)\left\{\ln\left(\frac{W}{W}\right)\right\}^2\right] * \exp\left[\left(-0.0653\right)\left\{\ln\left(\frac{G_d}{L_v}\right)\right\}^2\right] * \exp\left[\left(-0.223\right)\left\{\ln\left(\frac{g}{e}\right)\right\}^2\right] * \exp\left[\left(0.1153\right)\left\{\ln\left(\frac{\alpha}{60}\right)\right\}^2\right] * \exp\left[\left(-0.2805\right)\left\{\ln\left(\frac{p}{e}\right)\right\}^2\right]$$

$$f = 3.1934 * Re^{-0.3151} * \left(\frac{e}{D}\right)^{0.268} * \left(\frac{W}{W}\right)^{0.1132} * \left(\frac{G_d}{L_v}\right)^{0.0610} * \left(\frac{g}{e}\right)^{-0.1769} * \left(\frac{G_d}{60}\right)^{0.1553} * \left(\frac{p}{e}\right)^{-0.7941} * \exp\left[\left(0.0974\right)\left\{\ln\left(\frac{W}{W}\right)\right\}^2\right] * \exp\left[\left(-0.1065\right)\left\{\ln\left(\frac{G_d}{L_v}\right)\right\}^2\right] * \exp\left[\left(-0.6349\right)\left\{\ln\left(\frac{g}{e}\right)\right\}^2\right] * \exp\left[\left(-0.1527\right)\left\{\ln\left(\frac{\alpha}{60}\right)\right\}^2\right] * \exp\left[\left(0.1486\right)\left\{\ln\left(\frac{p}{e}\right)\right\}^2\right]$$

Configuración tipo winglet (Kumar & Layek, 2021).

Figura 29 Configuración 6: configuración tipo Winglet

$$Nu = 3.64x10^{-5} * Re^{0.9538} * \left(\frac{\alpha}{75}\right)^{-0.9084} * \left(\frac{P}{e}\right)^{3.7245} * \left(\frac{W}{w}\right)^{2.3697} *$$

$$\exp\left[\left(-1.2153\right) \left\{\ln\left(\frac{\alpha}{75}\right)\right\}^{2}\right] * \exp\left[\left(-0.8993\right) \left\{\ln\left(\frac{P}{e}\right)\right\}^{2}\right] * \qquad \{156\} Nu \ Config6$$

$$\exp\left[\left(-0.8056\right) \left\{\ln\left(\frac{W}{w}\right)\right\}^{2}\right]$$

$$f = 1.3x10^{-1} * Re^{-0.374} * \left(\frac{\alpha}{75}\right)^{-0.452} * \left(\frac{P}{e}\right)^{-0.121} * \left(\frac{W}{w}\right)^{2.4138} *$$

$$\exp\left[\left(-0.7719\right) \left\{\ln\left(\frac{W}{w}\right)\right\}^{2}\right]$$

$$(157) FF \ config6$$

Configuración en forma de hoyuelo (Sethi, Varun, & Thakur, 2012).

Figura 18 Configuración 7: placa con hoyuelos

$$Nu = 7.1x10^{-3} * Re^{1.1386} * \left(\frac{e}{D_h}\right)^{0.3629} * \left(\frac{p}{e}\right)^{-0.047} * \left(\frac{\alpha}{60}\right)^{-0.0048} * \exp\left[\left(-0.7792\right)\left\{\ln\left(\frac{\alpha}{60}\right)\right\}^2\right]$$

$$(158) Nu Config7$$

$$f = 4.869x10^{-1} * Re^{-0.223} * \left(\frac{e}{D_h}\right)^{0.2663} * \left(\frac{p}{e}\right)^{-0.059} * \left(\frac{\alpha}{60}\right)^{0.0042} * \exp\left[\left(-0.4801\right)\left\{\ln\left(\frac{\alpha}{60}\right)\right\}^2\right]$$

$$(159) FF config7$$

Configuración de forma de arco múltiple (Singh, Varun, & Siddhartha, 2014).

Figura 191 Configuración 8: en forma de arco múltiple

$$Nu = 1.564x10^{-4} * Re^{1.343} * \left(\frac{e}{D}\right)^{0.048} * \left(\frac{W}{w}\right)^{0.407} * \left(\frac{p}{e}\right)^{0.572} * \left(\frac{\alpha}{90}\right)^{-0.355} *$$

$$\exp\left[\left(-0.099\right) \left\{\ln\left(\frac{W}{w}\right)\right\}^{2}\right] * \exp\left[\left(-0.148\right) \left\{\ln\left(\frac{p}{e}\right)\right\}^{2}\right] * \qquad (160 \} Nu Config8$$

$$\exp\left[\left(-0.272\right) \left\{\ln\left(\frac{\alpha}{90}\right)\right\}^{2}\right]$$

$$f = 0.063 * Re^{-0.16} * \left(\frac{e}{D}\right)^{0.102} * \left(\frac{W}{w}\right)^{0.277} * \left(\frac{p}{e}\right)^{0.562} * \left(\frac{\alpha}{90}\right)^{0.023} *$$

$$\exp\left[\left(-0.140\right) \left\{\ln\left(\frac{p}{e}\right)\right\}^{2}\right] * \exp\left[\left(-0.013\right) \left\{\ln\left(\frac{\alpha}{90}\right)\right\}^{2}\right]$$

Configuración de arco rotas (Hans, Gill, & Singh, 2017).

Figura 20 Configuración 9: arcos rotos

$$Nu = 1.014x10^{-3} * Re^{1.036} * \left(\frac{p}{e}\right)^{2.522} * \left(\frac{\alpha}{90}\right)^{-0.293} * \left(\frac{d}{w}\right)^{-0.078} * \left(\frac{g}{e}\right)^{0.412} * \exp\left[\left(-0.567\right)\left\{\ln\left(\frac{p}{e}\right)\right\}^{2}\right] * \left(162 \right) Nu Config9 \exp\left[\left(-0.114\right)\left\{\ln\left(\frac{\alpha}{90}\right)\right\}^{2}\right] * \exp\left[\left(-0.077\right)\left\{\ln\left(\frac{d}{w}\right)\right\}^{2}\right] * \left(162 \right) Nu Config9 \exp\left[\left(-0.133\right)\left\{\ln\left(\frac{g}{e}\right)\right\}^{2}\right]$$

$$f = 8.1921x10^{-2} * Re^{-0.147} * \left(\frac{p}{e}\right)^{1.191} * \left(\frac{\alpha}{90}\right)^{-0.292} * \left(\frac{d}{w}\right)^{-0.067} * \left(\frac{g}{e}\right)^{-0.006} * \left(\frac{e}{D_{h}}\right)^{0.528} * \exp\left[\left(-0.255\right)\left\{\ln\left(\frac{p}{e}\right)\right\}^{2}\right] * \left(163\right) FF config9 \exp\left[\left(-0.110\right)\left\{\ln\left(\frac{\alpha}{90}\right)\right\}^{2}\right] * \exp\left[\left(-0.063\right)\left\{\ln\left(\frac{d}{w}\right)\right\}^{2}\right] * \exp\left[\left(-0.158\right)\left\{\ln\left(\frac{g}{e}\right)\right\}^{2}\right]$$

Generador de vórtice de aleta de tipo rectangular y trapezoidal (Skullong, Promthaisong, Promvonge, Thianpong, & Pimsarn, 2018).

Figura 213 Configuración 10: generador de vórtice de aleta rectangular y trapezoidal

RWVG

$$Nu = 0.347 * Re^{0.729} * Pr^{0.4} * (B_R)^{0.215} * (P_R)^{-0.203}$$

$$f = 8.334 * Re^{-0.056} * (B_R)^{0.682} * (P_R)^{-0.525}$$

$$f = 8.334 * Re^{-0.056} * (B_R)^{0.682} * (P_R)^{-0.525}$$

TWVG

$$Nu = 0.279 * Re^{0.736} * Pr^{0.4} * (B_R)^{0.13} * (P_R)^{-0.104}$$

$$f = 5.102 * Re^{-0.062} * (B_R)^{0.471} * (P_R)^{-0.247}$$

$$f = 5.102 * Re^{-0.062} * (B_R)^{0.471} * (P_R)^{-0.247}$$

P-RWVG

$$Nu = 0.194 * Re^{0.742} * Pr^{0.4} * \left(\frac{A_h}{A_w}\right)^{-0.0625}$$

$$f = 1.814 * Re^{-0.056} * \left(\frac{A_h}{A_w}\right)^{-0.1634}$$

$$f = 1.814 * Re^{-0.056} * \left(\frac{A_h}{A_w}\right)^{-0.1634}$$

$$f = 1.814 * Re^{-0.056} * \left(\frac{A_h}{A_w}\right)^{-0.1634}$$

P-TWVG

$$Nu = 0.191 * Re^{0.736} * Pr^{0.4} * \left(\frac{A_h}{A_w}\right)^{-0.0703}$$

$$f = 1.169 * Re^{-0.062} * \left(\frac{A_h}{A_w}\right)^{-0.1957}$$

$$f = 1.169 * Re^{-0.062} * \left(\frac{A_h}{A_w}\right)^{-0.1957}$$

$$f = 1.169 * Re^{-0.062} * \left(\frac{A_h}{A_w}\right)^{-0.1957}$$

Protuberancia cónica (Alam & Kim, 2017).

Figura 224 Configuración 11: protuberancias cónicas

$$Nu = 2.29x10^{-4} * Re^{0.984} * \left(\frac{e}{D}\right)^{0.280} * \left(\frac{p}{e}\right)^{4.085} *$$

$$\exp\left[\left(-0.922\right) \left\{\ln\left(\frac{p}{e}\right)\right\}^{2}\right]$$

$$f = 2.19x10^{4} * Re^{-0.352} * \left(\frac{e}{D}\right)^{5.839} * \left(\frac{p}{e}\right)^{1.860} * \exp\left[\left(0.739\right) \left\{\ln\left(\frac{e}{D}\right)\right\}^{2}\right] *$$

$$\exp\left[\left(-0.523\right) \left\{\ln\left(\frac{p}{e}\right)\right\}^{2}\right]$$

$$(172) Nu Config11$$

$$f = 2.19x10^{4} * Re^{-0.352} * \left(\frac{e}{D}\right)^{5.839} * \left(\frac{p}{e}\right)^{1.860} * \exp\left[\left(0.739\right) \left\{\ln\left(\frac{e}{D}\right)\right\}^{2}\right] *$$

$$(173) FF config11$$

Configuración en forma de S múltiple (Kumar, Prajapati, & Samir, 2017).

Figura 23 Configuración 12: en forma de S múltiple

$$\begin{split} Nu &= 1.4332 x 10^{-4} * Re^{1.2764} * \left(\frac{W}{w}\right)^{0.2748} * \left(\frac{p}{e}\right)^{0.4876} * \left(\frac{a}{90}\right)^{-0.0468} * \\ \left(\frac{e}{D_h}\right)^{-0.7653} * \exp\left[\left(-0.1084\right) \left\{\ln\left(\frac{W}{w}\right)\right\}^2\right] * \exp\left[\left(-0.1107\right) \left\{\ln\left(\frac{p}{e}\right)\right\}^2\right] * \\ exp\left[\left(-0.0642\right) \left\{\ln\left(\frac{p}{e}\right)\right\}^2\right] * \exp\left[\left(-0.1257\right) \left\{\ln\left(\frac{e}{D_h}\right)\right\}^2\right] \\ f &= 1.430 x 10^{-1} * Re^{-0.224} * \left(\frac{W}{w}\right)^{0.1424} * \left(\frac{p}{e}\right)^{0.7657} * \left(\frac{a}{90}\right)^{0.2129} * \\ \left(\frac{e}{D_h}\right)^{0.2159} * \exp\left[\left(-0.187\right) \left\{\ln\left(\frac{p}{e}\right)\right\}^2\right] \end{split}$$

Configuración de un cuarto de círculo (Mahanand & Senapati, 2021).

Figura 24 Configuración 13: forma de cuarto de círculo

$$Nu = 0.0341 * Re^{0.884} * \left(\frac{P}{e}\right)^{-0.1293}$$

$$f = 0.5953 * Re^{-0.3194} * \left(\frac{P}{e}\right)^{-0.0985}$$

$$(177) FF config13$$

Configuración de secciones rectangulares (Korpale, Deshmukh, Mathpati, & Dalvi, 2020).

Figura 25 Configuración 14: secciones rectangulares

$$Nu = 0.024 * Re^{0.8032} * \left(\frac{P}{e}\right)^{1.4013} * \left(\frac{e}{D}\right)^{0.6762} * \left(\frac{w}{e}\right)^{-0.5388} * \exp[A]$$

$$\begin{cases} 178 \ Nu \\ Config14 \end{cases}$$

$$A = -0.1728 * \left(\ln\left(\frac{P}{e}\right) * \ln\left(\frac{P}{D}\right)\right) + 0.1986 * \left(\ln\left(\frac{P}{e}\right)\ln\left(\frac{w}{e}\right)\right) + 0.0658 * \left(\ln\left(\frac{P}{e}\right)\ln\left(\frac{w}{e}\right)\right) - 0.3235 \left(\ln\left(\frac{P}{e}\right)\right)^2 A$$

$$f = 24.167 * Re^{-0.1953} * \left(\frac{P}{e}\right)^{0.1906} * \left(\frac{e}{D}\right)^{2.5305} * \left(\frac{w}{e}\right)^{-0.3140} * \exp[B]$$

$$\begin{cases} 180 \ FF \\ config14 \end{cases}$$

$$B = -0.2073 * \left(\ln\left(\frac{P}{e}\right) * \ln\left(\frac{e}{D}\right)\right) + 0.1293 * \left(\ln\left(\frac{P}{e}\right)\ln\left(\frac{w}{e}\right)\right) + 0.0497 * \left(\ln\left(\frac{e}{D}\right)\ln\left(\frac{w}{e}\right)\right) - 0.1880 \left(\ln\left(\frac{P}{e}\right)\right)^2 + 0.2287 \left(\ln\left(\frac{e}{D}\right)\right)^2$$

$$config14 Valor de B$$

Configuración híbrida de nervadura de arco roto y nervaduras escalonadas (Gill, Hans, & Singh, 2021).

Figura 38 Configuración 15: nervaduras de arco roto con nervaduras escalonadas

$$\begin{split} Nu &= 3.596 x 10^{-3} * Re^{1.068} * \left(\frac{g}{e}\right)^{-0.018} * \left(\frac{r}{g}\right)^{-0.02} * \left(\frac{w}{w}\right)^{-0.073} * \left(\frac{p}{e}\right)^{1.403} * \\ \left(\frac{\alpha}{90}\right)^{-0.408} * \left(\frac{e}{D_h}\right)^{0.56} * \exp\left[\left(-0.151\right) \left\{\ln\left(\frac{g}{e}\right)\right\}^2\right] * \\ \exp\left[\frac{0.125}{1+\left\{-2.0*\ln\left(\frac{p'}{p}\right)^{-1.23\right\}^2}\right] * \exp\left[\left(0.23\right) \left\{\ln\left(\frac{r}{g}\right)\right\}^2 + \left(-0.115\right) \left\{\ln\left(\frac{r}{g}\right)\right\}^3\right] * \quad (182 \ \text{Nu Config15} \\ \exp\left[\left(-0.077\right) \left\{\ln\left(\frac{w}{w}\right)\right\}^2\right] * \exp\left[\left(-0.308\right) \left\{\ln\left(\frac{p}{e}\right)\right\}^2\right] * \\ \exp\left[\left(-0.171\right) \left\{\ln\left(\frac{\alpha}{90}\right)\right\}^2\right] \\ f &= 7.9818 x 10^{-2} * Re^{-0.157} * \left(\frac{g}{e}\right)^{-0.021} * \left(\frac{r}{g}\right)^{0.012} * \left(\frac{w'}{w}\right)^{-0.104} * \left(\frac{p}{e}\right)^{1.739} * \\ \left(\frac{\alpha}{90}\right)^{-0.638} * \left(\frac{e}{D_h}\right)^{0.783} * \exp\left[\left(-0.209\right) \left\{\ln\left(\frac{g}{e}\right)\right\}^2\right] * \\ \exp\left[\frac{1.062}{1+\left\{-2.15*\ln\left(\frac{p'}{p}\right)^{-1.337\right\}^2}\right] * \exp\left[\left(0.12\right) \left\{\ln\left(\frac{r}{g}\right)\right\}^2 + \left(-0.064\right) \left\{\ln\left(\frac{r}{g}\right)\right\}^3\right] * \quad (183) \ \text{FF config15} \\ \exp\left[\left(-0.101\right) \left\{\ln\left(\frac{w'}{w}\right)\right\}^2\right] * \exp\left[\left(-0.379\right) \left\{\ln\left(\frac{p}{e}\right)\right\}^2\right] * \\ \exp\left[\left(-0.258\right) \left\{\ln\left(\frac{\alpha}{90}\right)\right\}^2\right] \end{split}$$

WVG con un agujero semicircular (Kumar & Layek, 2020).

Figura 39 Configuración 16: WVG con un agujero semicircular

$$Nu = 3.64x10^{-5} * Re^{0.95} * \left(\frac{\alpha}{75}\right)^{-0.91} * \left(\frac{P_i}{e}\right)^{3.73} * \left(\frac{W_w}{w}\right)^{2.37} * \exp\left[\left(-1.22\right)\left\{\ln\left(\frac{\alpha}{75}\right)\right\}^2\right] * \exp\left[\left(-0.90\right)\left\{\ln\left(\frac{P_i}{e}\right)\right\}^2\right] * \left(184 \right) Nu Config16 \exp\left[\left(-0.81\right)\left\{\ln\left(\frac{W_w}{w}\right)\right\}^2\right]$$

$$f = 0.13 * Re^{-0.37} * \left(\frac{\alpha}{75}\right)^{-0.45} * \left(\frac{P_i}{e}\right)^{0.12} * \left(\frac{W_w}{w}\right)^{2.41} * \left(185 \right) FF config16 \exp\left[\left(-0.77\right)\left\{\ln\left(\frac{W_w}{w}\right)\right\}^2\right]$$

Nervaduras circulares (Yadav, Shrivastava, Sharma, & Dwivedi, 2021).

Figura 26 Configuración 17: nervaduras circulares

$$Nu = 0.0361 * Re^{0.8130} * \left(\frac{P}{e}\right)^{0.1360} * \exp\left[\left(-0.0387\right)\left\{\ln\left(\frac{P}{e}\right)\right\}^2\right]$$

$$f = 0.4845 * Re^{-0.2745} * \left(1 + \frac{P}{e}\right)^{-0.2245}$$

$$f = 0.4845 * Re^{-0.2745} * \left(1 + \frac{P}{e}\right)^{-0.2245}$$

$$f = 0.4845 * Re^{-0.2745} * \left(1 + \frac{P}{e}\right)^{-0.2245}$$

Perfiles de curvas cónicas (Ngo & Phu, 2020).

Figura 271 Configuración 18: perfiles de curvas cónicas

$$Nu = 0.0152703 * Re^{0.898047} * abs(K)^{0-023995}$$

$$f = 0.0252542 * Re^{-0.0407643882} * abs(K)^{-0.0182465}$$

{ 188 } Nu Config18

{ 189 } FF config18

Perfil inverso NACA 0040 (Patel, Jain, & Lakhera, 2020).

Figura 282 Configuración 19: perfil inverso NACA 0040

$$Nu = 0.009016 * Re^{0.526} * \left(\frac{e}{D}\right)^{-3.1354} * \exp\left[\left(-0.5834\right)\left\{\ln\left(\frac{e}{D}\right)\right\}^{2}\right]$$

$$f = 0.32449 * Re^{1.3728} * \left(\frac{e}{D}\right)^{5.6236} * \exp\left[\left(-0.0875\right)\left\{\ln(Re)\right\}^{2}\right] *$$

$$\exp\left[\left(0.943\right)\left\{\ln\left(\frac{e}{D}\right)\right\}^{2}\right]$$

$$(190) Nu Config19$$

$$(191) FF config19$$

Perfil inverso discreto NACA 0040 (Patel, Jain, & Lakhera, 2021).

Figura 293 Configuración 20: perfil inverso discreto NACA 0040

$$Nu = 0.509 * Re^{0.507} * \left(\frac{\alpha}{90}\right)^{-0.191} * \left(\frac{g}{l}\right)^{-0.294} * \left(\frac{w}{e}\right)^{-0.008} * \exp\left[\left(-0.066\right) \left\{\ln\left(\frac{\alpha}{90}\right)\right\}^{2}\right] * \exp\left[\left(-0.094\right) \left\{\ln\left(\frac{g}{l}\right)\right\}^{2}\right] * \exp\left[\left(-0.045\right) \left\{\ln\left(\frac{w}{e}\right)\right\}^{2}\right]$$

{ 192 } Nu Config20

$$f = 0.387 * Re^{-0.327} * \left(\frac{\alpha}{90}\right)^{-0.082} * \left(\frac{g}{l}\right)^{0.597} * \left(\frac{w}{e}\right)^{-0.083} * \exp\left[\left(-0.027\right)\left\{\ln\left(\frac{\alpha}{90}\right)\right\}^{2}\right] * \exp\left[\left(0.177\right)\left\{\ln\left(\frac{g}{l}\right)\right\}^{2}\right] * \left(193\right) FF \ config20 \\ \exp\left[\left(0.169\right)\left\{\ln\left(\frac{w}{e}\right)\right\}^{2}\right]$$

Configuración de nervadura discreta en V hacia abajo (Singh, Chander, & Saini, 2012).

Figura 30 Configuración 21: nervaduras discretas en V hacia abajo

$$Nu = 2.36x10^{-3} * Re^{0.90} * \left(\frac{p}{e}\right)^{3.50} * \left(\frac{\alpha}{60}\right)^{-0.023} * \left(\frac{d}{w}\right)^{-0.043} * \left(\frac{g}{e}\right)^{-0.014} * \left(\frac{p}{D_h}\right)^{0.47} * \exp\left[\left(-0.84\right)\left\{\ln\left(\frac{p}{e}\right)\right\}^2\right] * \exp\left[\left(-0.72\right)\left\{\ln\left(\frac{\alpha}{60}\right)\right\}^2\right] * \left(194\right) Nu Config21$$

$$\exp\left[\left(-0.05\right)\left\{\ln\left(\frac{d}{w}\right)\right\}^2\right] * \exp\left[\left(-0.15\right)\left\{\ln\left(\frac{g}{e}\right)\right\}^2\right]$$

$$f = 4.13x10^{-2} * Re^{-0.126} * \left(\frac{p}{e}\right)^{2.74} * \left(\frac{\alpha}{60}\right)^{-0.034} * \left(\frac{d}{w}\right)^{-0.058} * \left(\frac{g}{e}\right)^{0.031} * \left(\frac{e}{D_h}\right)^{0.70} * \exp\left[\left(-0.685\right)\left\{\ln\left(\frac{p}{e}\right)\right\}^2\right] * \exp\left[\left(-0.93\right)\left\{\ln\left(\frac{\alpha}{60}\right)\right\}^2\right] * \left(195\right) FF config21$$

$$\exp\left[\left(-0.058\right)\left\{\ln\left(\frac{d}{w}\right)\right\}^2\right] * \exp\left[\left(-0.21\right)\left\{\ln\left(\frac{g}{e}\right)\right\}^2\right]$$

Aspereza de los granos de la rugosidad del metal (Karmare & Tikekar, 2009).

1500 200

Dis. of renghness wire-2 + 2000

{ 196 } Nu Config22

Configuración con ranuras achaflanadas (Layek, Saini, & Solanki, 2007).

Figura 46 Configuración 23: ranuras achaflanadas

$$Nu = 0.0028 * Re^{0.93} * \left(\frac{e}{D_h}\right)^{0.528} * \left(\frac{p}{e}\right)^{2.17} * \left(\frac{g}{p}\right)^{-1.054} * \phi^{0.77} * \exp\left[(-0.138)\{\ln(\phi)\}^2\right] * \exp\left[(-0.57)\left\{\ln\left(\frac{p}{e}\right)\right\}^2\right] * \qquad (198) Nu \ Config23$$

$$\exp\left[(-0.649)\left\{\ln\left(\frac{g}{p}\right)\right\}^2\right]$$

$$f = 0.00276 * Re^{-0.1279} * \left(\frac{e}{D_h}\right)^{0.3632} * \left(\frac{p}{e}\right)^{4.255} * \left(\frac{g}{p}\right)^{-0.976} * \exp\left[(-0.00575\phi)\right] * \exp\left[(-1.066)\left\{\ln\left(\frac{p}{e}\right)\right\}^2\right] * \exp\left[(-0.583)\left\{\ln\left(\frac{g}{p}\right)\right\}^2\right]$$

Salientes orientados en forma de arco como elemento de rugosidad (Yadav, Kaushal, Varun, & Siddhartha, 2014).

Figura 47 Configuración 24: salientes en forma de arco

$$Nu = 0.154 * Re^{1.017} * \left(\frac{p}{e}\right)^{-0.38} * \left(\frac{e}{D}\right)^{0.521} * \left(\frac{\alpha}{60}\right)^{-0.213} *$$

$$\exp\left[\left(2.023\right) \left\{\ln\left(\frac{\alpha}{60}\right)\right\}^{2}\right]$$

$$f = 7.207 * Re^{-0.56} * \left(\frac{p}{e}\right)^{-0.18} * \left(\frac{e}{D}\right)^{0.176} * \left(\frac{\alpha}{60}\right)^{0.038} *$$

$$\exp\left[\left(-1.412\right) \left\{\ln\left(\frac{\alpha}{60}\right)\right\}^{2}\right]$$

$$(200) Nu Config24$$

$$(201) FF config24$$

Configuración de nervadura torcida (Kumar & Layek, 2019).

Figura 48 Configuración 25: nervadura torcida

$$Nu = 3x10^{-10} * Re^{1.043} * \left(\frac{\alpha}{90}\right)^{-0.84} * \left(\frac{P}{e}\right)^{15.76} * \left(\frac{y}{e}\right)^{-0.17} *$$

$$\exp\left[\left(-0.85\right) \left\{\ln\left(\frac{\alpha}{90}\right)\right\}^{2}\right] * \exp\left[\left(-3.75\right) \left\{\ln\left(\frac{P}{e}\right)\right\}^{2}\right]$$

$$f = 6.82 * Re^{-0.58} * \left(\frac{\alpha}{90}\right)^{0.23} * \left(\frac{P}{e}\right)^{-0.42} * \left(\frac{y}{e}\right)^{0.31}$$

$$(202) Nu Config25$$

$$(202) Nu Config25$$

$$(203) FF config25$$

Configuración con nervadura de arco (Sureandhar, Srinivasan, Muthukumar, & Senthilmurugan, 2021).

Figura 49 Configuración 26: nervadura de arco

$$Nu = 0.001047 * Re^{1.386} * \left(\frac{e}{D_e}\right)^{0.3772} * \left(\frac{\alpha_a}{90}\right)^{-0.1198}$$

$$f = 0.14408 * Re^{-0.17103} * \left(\frac{e}{D_e}\right)^{0.1765} * \left(\frac{\alpha_a}{90}\right)^{0.1185}$$

$$f = 0.14408 * Re^{-0.17103} * \left(\frac{e}{D_e}\right)^{0.1765} * \left(\frac{\alpha_a}{90}\right)^{0.1185}$$

3.7 Conclusiones

En este capítulo se presentó el modelo matemático constituido por las ecuaciones de balance de cada componente del CSA, se definieron las ecuaciones para las propiedades físicas del aire y de los coeficientes de transferencia de calor. Además, se indicaron las exergías involucradas y la formula de eficiencia exegética. Como siguiente etapa, se expone el procedimiento de la solución numérica del modelo, el prototipo del CSA, la técnica de AG y las diferentes configuraciones de la placa absorbedora.

3.8 Bibliografía

(s.f.).

Abal, G., & Durañona, V. (2013). Manual Técnico de Energía Solar Térmica. Volumen I: Fundamentos.

- Alam, T., & Kim, M. (2017). Heat transfer enhancement in solar air heater duct with conical protrusion roughness ribs. *Applied Thermal Engineering*, 458 469.
- Alam, T., Saini, R. P., & Saini, J. S. (2014). Effect of circularity of perforation holes in V-shaped blockages on heat transfer and friction characteristics of rectangular solar air heater duct. *Energy Conversion and Management*, 952 - 963.

- Baissi, M. T., Brima, A., Aoues, K., Khanniche, R., & Moummi, N. (2020). Thermal behavior in a solar air heater channel roughened with delta-shaped vortex generators. *Applied Thermal Engineering*, 113 - 563.
- Bhushan, B., & Singh, R. (2011). Nusselt number and friction factor correlations for solar air heater duct having artificially roughened absorber plate. *Solar Energy*, 1109 1118.
- Bracamonte, J., & Baritto, M. (2013). Optimal aspect ratios for non-isothermal flat plate solar collectors for air heating. *Solar Energy*, 605 - 613.
- Çengel, Y. A. (2011). Transferencia de calor y masa. McGraw-Hill Interamericana de España S.L.
- Duffie, J. A., & Beckman, W. A. (2013). *Solar Engineering of Thermal Processes*. John Wiley & Sons, Inc.
- Gill, R. S., Hans, V. S., & Singh, R. P. (2021). Optimization of artificial roughness parameters in a solar air heater duct roughned with hybrid ribs. *Applied Thermal Engineering*, 116.
- Gupta, M. K., & Kaushik, S. C. (2008). Exergetic performance evaluation and parametric studies of solar air heater. *Energy*, 1691 - 1702.
- Hans, V. S., Gill, R. S., & Singh, S. (2017). Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with broken arc ribs. *Experimental Thermal and Fluid Science*, 77 - 89.
- Hedayatizadeh, M., Sarhaddi, F., Safavinejad, A., Ranjbar, F., & Chaji, H. (2016). Exergy loss-based efficiency optimization of a double-pass/glazed v-corrugated plate solar air heater. *Energy*, 799 810.
- Karmare, S. V., & Tikekar, A. N. (2009). Experimental investigation of optimum thermohydraulic performance of solar air heaters with metal rib grits roughness. *Solar Energy*, 6 13.
- Korpale, V. S., Deshmukh, S. P., Mathpati, C. S., & Dalvi, V. H. (2020). Numerical simulations and optimization of solar air heaters. *Applied Thermal Engineering*, 115.
- Kumar, A., & Layek, A. (2019). Energetic and exergetic performance evaluation of solar air heater with twisted rib roughness on absorber plate. *Journal of Cleaner Production*, 617 628.
- Kumar, A., & Layek, A. (2020). Nusselt number and friction factor correlation of solar air heater having winglet type vortex generator over absorber plate. *Solar Energy*, 334 348.
- Kumar, A., & Layek, A. (2021). Energetic and exergetic based performance evaluation of solar air heater having winglet type roughness on absorber surface. *Solar Energy Materials & Solar Cells*, 111 -147.
- Kumar, A., Saini, R. P., & Saini, J. S. (2013). Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having multi v-shaped with gap rib as artificial roughness. *Renewable Energy*, 151 - 163.
- Kumar, K., Prajapati, D. R., & Samir, S. (2017). eat Transfer and Friction Factor Correlations Development for Solar Air Heater Duct Artificially Roughened with 'S' Shape Ribs. *Experimental Thermal and Fluid Science*, 249 - 261.

- Layek, A., Saini, J. S., & Solanki, S. C. (2007). Second law optimization of a solar air heater having chamfered rib–groove roughness on absorber plate. *Renewable Energy*, 1967 1980.
- Mahanand, Y., & Senapati, J. R. (2021). Thermo-hydraulic performance analysis of a solar air heater (SAH) with quarter-circular ribs on the absorber plate: A comparative study. *International Journal of Thermal Sciences*, 106.
- Mortazavi, A., & Ameri, M. (2018). Conventional and advanced exergy analysis of solar flat plate air collectors. *Energy*, 277 - 288.
- Ngo, T. T., & Phu, N. M. (2020). Computational fluid dynamics analysis of the heat transfer and pressure drop of solar air heater with conic-curve profile ribs. *Journal of Thermal Analysis and Calorimetry*, 3235 3246.
- Patel, Y. M., Jain, S. V., & Lakhera, V. J. (2020). Thermo-hydraulic performance analysis of a solar air heater roughened with reverse NACA profile ribs. *Applied Thermal Engineering*, 114.
- Patel, Y. M., Jain, S. V., & Lakhera, V. J. (2021). Thermo-hydraulic performance analysis of a solar air heater roughened with discrete reverse NACA profile ribs. *International Journal of Thermal Sciences*, 107.
- Sethi, M., Varun, & Thakur, N. S. (2012). Correlations for solar air heater duct with dimpled shape roughness elements on absorber plate. *Solar Energy*, 2852 - 2861.
- Singh, A. P., Varun, & Siddhartha. (2014). Heat transfer and friction factor correlations for multiple arc shape roughness elements on the absorber plate used in solar air heaters. *Experimental Thermal and Fluid Science*, 117 126.
- Singh, S., Chander, S., & Saini, J. S. (2012). Exergy based analysis of solar air heater having discrete Vdown rib roughness on absorber plate. *Energy*, 749 - 758.
- Skullong, S., & Promvonge, P. (2014). Experimental Investigation on Turbulent Convection in Solar Air Heater Channel Fitted with Delta Winglet Vortex Generator. Fluid Dynamics and Transport Phenomena. *Chinese Journal of Chemical Engineering*, 1 - 10.
- Soriga, I. (2016). Thermal inertia of flat-plate solar collectors in different radiative regimes. *Energy Conversion and Management*, 27 37.
- Sureandhar, G., Srinivasan, G., Muthukumar, P., & Senthilmurugan, S. (2021). Performance analysis of arc rib fin embedded in a solar air heater. *Thermal Science and Engineering Progress*, 100.
- Tiwari, G. N., Tiwari, A., & Shyam. (2016). *Handbook of Solar Energy Theory, Analysis and Applications*. Springer.
- Yadav, A. S., Shrivastava, V., Sharma, A., & Dwivedi, M. K. (2021). umerical simulation and CFD-based correlations for artificially roughened solar air heater. *Materials Today: Proceedings*, 2685 -2693.
- Yadav, S., Kaushal, M., Varun, & Siddhartha. (2014). Exergetic performance evaluation of solar air heater having arc shape oriented protrusions as roughness element. *Solar Energy*, 181 189.

CAPITULO 4: RESULTADOS Y ANÁLISIS

4.1 Introducción.

La necesidad de proporcionar sistemas de energía más eficientes y rentables se ha vuelto cada vez más importante. La mayor competencia global y el deseo de mejores procesos y más eficientes han dado lugar a la necesidad de mejores prácticas de diseño. Durante la última década, ha crecido el interés en producir productos de mayor calidad a un costo mínimo, satisfaciendo las preocupaciones crecientes sobre el impacto ambiental, la seguridad y otros factores, en lugar de desarrollar un sistema que solo realiza una tarea deseada. El uso de energía está directamente relacionado con el bienestar, el nivel de vida y la prosperidad, y satisfacer la creciente demanda de energía de una manera segura y ambientalmente responsable es un desafío importante. La importancia de la energía en la vida diaria lo convierte en una prioridad importante para la optimización (Dincer & Rosen, 2017).

4.2 Validación experimental del modelo matemático

Los resultados de las comparaciones de las temperaturas de los elementos del colector obtenidas del experimento y los cálculos generados del modelo matemático, mostraron que los resultados de la simulación están muy cerca de los datos experimentales. Se agrega el error cuadrático medio (RMSE) en cada tabla de cada gráfica, se calcula de la siguiente manera:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (V_{real,i} - V_{estimado,i})^2}{N}}$$
 (206) RMSE

4.2.1 Comparación estadística entre resultados teóricos calculados y experimentales

La siguiente tabla y figura presentan los resultados de la temperatura de la cubierta superior obtenidos del experimento y los datos obtenidos de la simulación.

Tiempo	V _{CS,est}	V _{CS,real}	$V_{CS,real} - V_{CS,est}$	$\left(V_{CS,real} - V_{CS,est}\right)^2$
6.01	14.30067525	14.2	-0.100675251	0.01013551
6.66	17.69416789	14.7	-2.994167891	8.96504136
7.01	18.34407638	14.9	-3.444076377	11.8616621
7.51	19.75481208	16.7	-3.054812077	9.33187682
8.01	20.74360177	18.9	-1.843601768	3.39886748
8.54	22.51242544	23.6	1.087574564	1.18281843

Tabla 8 Datos de la cubierta superior

9.02	30.78211885	36	5.217881153	27.2262837
9.51	43.82553664	52.5	8.674463359	75.2463146
10.03	53.60654222	59	5.393457776	29.0893868
10.53	59.76640243	61	1.23359757	1.52176296
11.02	65.68072738	66.2	0.519272618	0.26964405
11.56	70.16536419	68	-2.165364186	4.68880206
12.01	73.0249604	68.9	-4.124960403	17.0152983
12.53	75.63291866	75	-0.632918659	0.40058603
13.03	75.51050868	73	-2.510508679	6.30265383
13.54	74.69387494	73.7	-0.993874938	0.98778739
14.01	73.72820877	70.8	-2.928208774	8.57440662
14.52	70.30749176	69	-1.307491758	1.7095347
15.02	67.4589542	64.3	-3.158954204	9.97899167
15.51	65.58873439	64	-1.588734393	2.52407697
16	58.89335792	54.4	-4.493357923	20.1902654
16.52	48.55079957	37.2	-11.35079957	128.840651
17.03	42.94358346	37.9	-5.043583464	25.4377342
17.63	39.8370094	35.5	-4.337009405	18.8096506
18.02	37.28910887	32	-5.289108866	27.9746726
18.62	34.17989839	28.7	-5.479898386	30.0292863
			Sumatoria:	471.568191
			RSME:	4.25878364

Figura 50 Perfiles teórico y experimental de temperatura de la cubierta superior

Se observa que el modelo tiene un error de 4.26 al momento de predecir la temperatura de la cubierta superior. A continuación, se presentan los resultados de la temperatura de la placa absorbedora obtenidos del experimento y los datos obtenidos de la simulación

Tabla 9 Datos de la PA

Tiempo	V _{PA,est}	V _{PA,real}	$V_{PA,real} - V_{AP,est}$	$\left(V_{PA,real}-V_{PA,est}\right)^2$
6.11	17.72701812	16.8	-0.92701812	0.85936259

6.57	18.44412554	16.5	-1.944125536	3.7796241
7.03	19.0038491	17.5	-1.5038491	2.26156212
7.55	20.70766504	18.9	-1.80766504	3.2676529
8.05	20.7502016	21.2	0.449798402	0.2023186
8.55	24.18863072	26.9	2.711369276	7.35152335
9.05	37.63951891	40	2.360481093	5.57187099
9.54	51.62934635	55.7	4.070653652	16.5702212
10.04	59.3240335	65.8	6.475966498	41.9381421
10.54	66.15736362	71.2	5.042636377	25.4281816
11.04	73.18382088	76.9	3.716179123	13.8099873
11.54	77.48996156	78.8	1.310038443	1.71620072
12.04	81.54078795	82.4	0.859212054	0.73824535
12.54	83.90370059	81.8	-2.103700594	4.42555619
13.06	82.6122563	79.2	-3.412256303	11.6434931
13.56	81.68707519	78.4	-3.287075188	10.8048633
14.04	79.43116536	76.6	-2.831165364	8.01549732
14.56	73.91224179	75	1.087758214	1.18321793
15.07	71.38356305	70.6	-0.783563054	0.61397106
15.54	68.04114145	67	-1.041141452	1.08397552
16.03	56.82219736	56.8	-0.022197362	0.00049272
16.56	45.24821228	41.1	-4.148212283	17.2076651
17.06	42.18110889	40.3	-1.881108889	3.53857065
17.56	39.76862789	38.1	-1.66862789	2.78431904
18.07	36.1583459	34.1	-2.058345903	4.23678786
18.57	34.08165234	31	-3.08165234	9.49658114
			Sumatoria:	198.529884
			RSME:	2.76328876

Figura 51 Perfiles teórico y experimental de temperatura de la placa absorbedora

En el caso de la placa absorbedora, el modelo presenta un error de 2.76 al predecir, menor que lo observado en la cubierta superior. Se presentan los resultados de la temperatura del aislante obtenidos del experimento y los datos obtenidos de la simulación

Tiempo	V _{AI,est}	V _{AI,real}	$V_{AI,real} - V_{AI,est}$	$\left(V_{AI,real}-V_{AI,est}\right)^2$
6.76	18.51853095	17	-1.518530949	2.305936245
7.63	19.92116856	19.1	-0.821168563	0.674317808
8.67	23.63909399	21.5	-2.139093986	4.575723081
9.61	42.00779355	45.3	3.292206448	10.83862329
10.63	53.81286379	56.9	3.087136211	9.530409984
11.72	63.48241206	63.4	-0.082412063	0.006791748
12.65	68.27357506	69	0.726424939	0.527693192
13.71	67.24497631	66.6	-0.644976306	0.415994436
14.66	61.71067579	65	3.289324209	10.81965375
15.62	57.65908522	57.6	-0.059085224	0.003491064
16.63	42.41028926	40.9	-1.510289255	2.280973634
17.29	41.27511341	38	-3.275113406	10.72636782
17.53	39.3172952	37.9	-1.417295197	2.008725675
18.27	36.02848807	33.3	-2.728488067	7.44464713
18.54	35.28691973	32	-3.286919733	10.80384133
			Sumatoria:	72.96319019
			RSME:	2.205496017

Tabla 10 Datos AI

Figura 52 Perfiles teórico y experimental de temperatura del aislante

Para la temperatura del aire de salida, los resultados obtenidos del experimento y los datos obtenidos de la simulación son los siguientes.

Tiempo	V _{FTs,est}	V _{FTs,real}	$V_{FTs,real} - V_{FTs,est}$	$\left(V_{FTs,real} - V_{FTs,est}\right)^2$
6.6	18.45918431	16.9	-1.559184314	2.431055726
7.23	18.62367916	17.7	-0.92367916	0.853183191
8.31	20.71634335	21.2	0.483656651	0.233923756
9.23	30.66238692	31.5	0.837613083	0.701595677
10.27	41.6031294	38.8	-2.803129396	7.857534411
11.29	49.11252301	50.3	1.18747699	1.410101602
12.26	52.70348012	52.7	-0.003480124	1.21113E-05
13.29	52.88591219	53.8	0.914087814	0.835556532
14.28	51.82141912	52.8	0.978580884	0.957620546
15.29	49.81577239	49.9	0.084227613	0.007094291
16.2	43.32894563	41.4	-1.928945631	3.720831249
17.21	38.1168718	37.2	-0.916871796	0.84065389
18.22	34.05711402	32.6	-1.457114023	2.123181276
18.58	32.74264684	31.2	-1.542646843	2.379759283
			Sumatoria:	24.35210354
			RSME:	1.318876782

Tabla 11 Datos flujo de salida

Figura 53 Perfiles teórico y experimental de temperatura del fluido de trabajo

Para las temperaturas del aislante y del flujo de salida, se observa un error 2.20 y 1.32, respectivamente. Por último, tenemos los datos de la placa base y del marco lateral.

Tabla	12	Datos	PB
-------	----	-------	----

Tiempo	V _{PB,est}	V _{PB,real}	$V_{PB,real} - V_{PB,est}$	$\left(V_{PB,real}-V_{PB,est}\right)^2$
6.44	18.53429656	18.8	0.265703444	0.07059832
7.12	18.50249496	18.8	0.297505042	0.08850925

8.19	18.77681141	19.5	0.723188585	0.523001729
9.3	21.15020878	24.2	3.049791217	9.301226466
10.22	25.94884839	27.8	1.851151606	3.426762269
11.17	31.77624925	32.9	1.123750752	1.262815754
12.17	37.414946	35.4	-2.014946	4.060007383
13.16	41.61420227	37.8	-3.814202274	14.54813898
14.16	44.28471351	39.6	-4.684713515	21.94654071
15.11	45.4677685	41.9	-3.5677685	12.72897207
16.06	45.46906788	40.7	-4.769067882	22.74400847
17.09	43.30405956	37	-6.304059565	39.741167
18.1	40.57720823	33.5	-7.077208228	50.08687631
18.69	38.79386575	31.6	-7.193865747	51.75170438
			Sumatoria:	232.2803291
			RSME:	4.07326062

Figura 54 Perfiles teórico y experimental de temperatura de la placa base

Tiempo	V _{ML,est}	V _{ML,real}	$V_{ML,real} - V_{ML,est}$	$\left(V_{ML,real}-V_{ML,est}\right)^2$
6.26	18.58528225	18.2	-0.385282252	0.148442414
7.07	18.42455986	18.5	0.07544014	0.005691215
8.07	19.35154683	20.4	1.048453167	1.099254043
9.1	25.41391024	32.9	7.486089756	56.04153983
10.11	34.53317625	42.55	8.016823748	64.269463
11.08	41.03381197	45.15	4.116188029	16.94300389
12.08	44.41344954	46.8	2.386550465	5.69562312

Tabla	13	Datos	ML

13.09	45.25168425	48.65	3.39831575	11.54854994
14.11	45.30413666	49.3	3.995863341	15.96692384
15.19	44.52511032	49.05	4.524889678	20.4746266
16.11	41.83816027	45.6	3.761839727	14.15143813
17.12	37.74622627	38.3	0.553773725	0.306665339
18.13	34.33807694	33.7	-0.638076944	0.407142186
18.72	32.25474803	31	-1.254748026	1.574392608
			Sumatoria:	208.6327562
			RSME:	3.86035487

Figura 55 Perfiles teórico y experimental de temperatura del marco lateral

Considerando que el RMSE cuantifica cuán diferente es un conjunto de valores. Cuanto más pequeño es un valor RMSE, más cercanos son los valores predichos y observados. Concluyendo que el modelo obtenido tiene un margen de error bajo.

4.3 Análisis paramétrico o de sensibilidad utilizando los resultados numéricos obtenidos con

el modelo

En la optimización del colector solar se aplicó el método de Runge Kutta Fehlberg para poder estimar el error y obtener mejores resultados. Como nuestro interés es la temperatura que puede alcanzar el fluido de trabajo se utilizó esta temperatura para indicar en el programa que el error en la temperatura del fluido deberá de ser siempre menos a 0.01 de lo contrario el programa indicara que es necesario reducir el paso. El paso que logró mantener este criterio fue h=0.01 y un $\Delta x=0.0006$.

Función objetivo.

La función objetivo que será optimizada es la eficiencia exergética. Ésta será presentada en las gráficas en forma de porcentaje.

Variables de decisión.

Los principales parámetros geométricos de diseño para la optimización del colector de aire son los siguientes:

δ_{cs} :	Espesor de cubierta superior	δ_{pa} :	Espesor de placa absorbedora				
Long:	Longitud del captador	δ_{ai} :	Espesor de aislante				
Anch:	Ancho del captador	δ_{pb} :	Espesor de placa base				
δ_{ai-pa} :	Distancia de aislante a placa absorbedora	δ_{ml} :	Espesor de marco lateral.				
δ_{pa-cs} :	Distancia de placa absorbedora a cubierta superior						

En cuanto a las propiedades de los materiales se eligieron las siguientes:

Tabla 15 Propiedades de los materiales

<i>k</i> (<i>W</i> / <i>mC</i>):	Conductividad térmica	<i>n</i> ₂ :	Índice de refracción
ε:	Emisividad	$P(kg/m^{3})$:	Densidad
$K(m^{-1})$:	Coeficiente de extinción	C (J/kgC):	Calor específico
τ:	Transmisividad		

Las condiciones iniciales definidas para todos los cálculos realizados son las siguientes:

Tabla 16 Condiciones de operación

Flujo másico		0.0035 kg/s	Espesor cubierta superior	0.003 m	
Temperatura del sol		5326.85 °C	Espesor placa absorbedora	0.001 m	
	CS	14.2 °C	Espesor aislante	0.01 m	
Temperaturas iniciales	PA	16.8 °C	Longitud del colector	1.05 m	
	AI	17 °C	Distancia de aislante a placa absorbedora	0.175 m	
	PB	Та	Ancho del colector	0.95 m	
	ML	Та	Espesor marco lateral	0.025 m	
	FTe y TTs	Та	Espesor placa base	0.025 m	
Tiempo inicial		6 horas	Material PB	Madera pino	
Tiempo final		10 horas	Material PA	Lamina lisa negra	
Tiempo miai		19 1101 as	Matchari	pintada de negro	
Paso h		0.01	Material CS	Vidrio ordinario	
Δx		0.0006	Material AI	Poliestireno expandido	
Temperatura de salida para cada ciclo		$T_{fts} = 2T_{ft} - T_{fte}$	Material ML	Madera pino	
Distancia de placa absorbedora a cubierta superior		0.86			

4.3.1 Efecto de la variación del material de la cubierta superior en la eficiencia exergética

Se realizan las siguientes variaciones para observar la influencia que tiene sobre la eficiencia exergética:

	k	З	K	n_2	ρ	С	α
Acrílico	0.18	0.9	42.61	1.49	1180	1400	
Policarbonato	0.22	0.9	34.3	1.6	1200	1200	
Vidrio ordinario	0.8	0.9	54.5	1.52	2500	820	
Vidrio Pyrex	1	0.85	25.14	1.470	2225	835	

Tabla 17 Materiales para CS

Obteniendo una mejor eficiencia exergética para el vidrio pyrex.

Figura 32 Eficiencia exergética para diferentes materiales de la CS

Observamos como las propiedades asociadas a la reflectancia (índice de refracción), la transmitancia (coeficiente de extinción) y la emisividad son las propiedades determinantes en la cubierta superior.

Figura 337 variación individual de propiedades de vidrio ordinario (calor especifico, coeficiente de extinción, conductividad térmica, densidad, emisividad, índice de refracción)

4.3.2 Efecto de la variación del material de la placa absorbedora en la eficiencia exergética

Se realizan las siguientes variaciones para observar la influencia que tiene sobre la eficiencia exergética:

Tabla 18 Materiales para PA

k	З	K	<i>n</i> ₂	ρ	С	α

Óxido de cobalto en níquel pulido	90.7	0.24		8900	444	0.94
Pintura negra en aluminio	237	0.88		2698.4	900	0.98
Óxido de níquel negro sobre aluminio	237	0.06		2698.4	900	0.93
Lamina lisa negra pintada de negro	52	0.88		7800	500	0.88

Se obtiene la eficiencia exergética para cada material, obteniendo mejor eficiencia para la pintura negra en aluminio.

Figura 348 Eficiencia exergética para diferentes materiales de la PA

Para la placa absorbedora las propiedades más importantes son la emisividad y la absortividad alta.

Figura 359 variación individual de propiedades de lámina lisa (absortividad, calor especifico, conductividad, densidad, emisividad)

4.3.3 Efecto de la variación del material del aislante en la eficiencia exergética

Los materiales seleccionados y sus propiedades que se muestran en la siguiente tabla son utilizados también para la placa base y el marco lateral según lo indicado en su respectiva figura.

	k	3	K	n_2	ρ	С	α
Poliestireno expandido	0.04	0.9			16	1200	0.1
Madera pino	0.15				450	2700	0.6
Espuma de poliuretano	0.023	0.9			24	1600	0.1
corcho	0.045	0.7			45	1880	0.1
Lana de roca	0.04	0.9			160	840	
Lana de vidrio	0.038				24	700	0.1

Tabla 19 Materiales para AI, PB y ML

Se obtiene la eficiencia exergética para cada material.

Figura 60 Eficiencia exergética para diferentes materiales de la AI

Observamos como la espuma de poliuretano proporciona la mayor eficiencia exergética. En la placa aislante las propiedades más significativas son la conductividad térmica baja y una emisividad alta.

4.3.4 Efecto de la variación del material de la placa base en la eficiencia exergética

Los materiales seleccionados y sus propiedades se muestran en la tabla 19.

Para la placa base solo son tres propiedades las involucradas, conductividad térmica, densidad y calor específico. Se obtiene la eficiencia exergética para cada material donde la espuma nuevamente lidera.

Figura 37 Eficiencia exergética para diferentes materiales de la PB

Para la placa base la propiedad principal es la conductividad térmica baja.

Figura 38 variación individual de propiedades de madera (calor especifico, conductividad térmica, densidad)

4.3.5 Efecto de la variación del material del marco lateral en la eficiencia exergética

Los materiales seleccionados y sus propiedades se muestran en la tabla 19.

Para los marcos laterales son cuatro propiedades las involucradas, conductividad térmica, densidad, calor específico y absortividad. Se obtiene la eficiencia exergética para cada material.

Figura 39 Eficiencia exergética para diferentes materiales de la ML

En el marco lateral la conductividad térmica baja es la propiedad más importante.

Figura 40 variación individual de propiedades de madera (absortividad, calor especifico, conductividad térmica, densidad)

4.3.6 Efecto de la variación del espesor de cubierta superior en la eficiencia exergética

A partir de este punto, los materiales y sus propiedades de la tabla siguiente son los utilizados para obtener todos los resultados al variar los parámetros geométricos de diseño.

Elemento	Material	k	ε	K	n_2			α
CS	Vidrio ordinario	0.8	0.9	54.5	1.52	2500	820	
PA	Lamina lisa negra pintada de negro	52	0.88			7800	500	0.88
AI	Poliestireno expandido	0.04	0.9			16	1200	
PB	Madera pino	0.15				450	2700	0.6
ML	Madera pino	0.15				450	2700	0.0

Tabla 20 Materiales para variación de geometrías

Se toman cuatro valores para la cubierta superior dentro del siguiente rango:

```
Restricción 0.001 < \delta_{cs} < 0.005
```


Figura 41 Variación de eficiencia exergética en el tiempo al variar espesor de CS

Se puede observar que mientras más aumenta el espesor de la cubierta superior la eficiencia exergética tiende a disminuir. Estos efectos observados son debido a que al aumentar el espesor de la cubierta superior se reduce la transmitancia de ésta, disminuyendo la irradiancia que llega a la placa absorbedora, es decir, lo que es absorbida por ella. Así que para tener mayor eficiencia exergética lo mejor sería tener el espesor de la cubierta superior lo más pequeño posible.

4.3.7 Efecto de la variación del espesor de la placa absorbedora en la eficiencia exergética

Se toman cuatro valores para la placa absorbedora dentro del siguiente rango:

Restricción $0.0005 < \delta_{pa} < 0.002$

Figura 427 Variación de la eficiencia exergética en el tiempo al variar espesor de PA

Menor espesor, mayor será la eficiencia exergética.

4.3.8 Efecto de la variación del espesor del aislante en la eficiencia exergética

Se toman cuatro valores para el aislante dentro del siguiente rango:

Restricción $0.005 < \delta_{ai} < 0.015$

Figura 438 Variación de eficiencia exergética en el tiempo para diferentes espesores de AI

Se puede observar que mientras más aumenta el espesor del aislante la eficiencia exergética tiende a aumentar. El aislante retiene más calor y aumenta su temperatura, aumentando así la transferencia al fluido de trabajo.

4.3.9 Efecto de la variación del espesor de la placa base en la eficiencia exergética

Se toman valores para la placa base dentro del siguiente rango:

Restricción $0.015 < \delta_{pb} < 0.035$

Figura 449 Variación de eficiencia exergética en el tiempo para diferentes espesores de PB

No se tiene alguna diferencia significativa al variar el espesor de la placa base. Podría tomarse la decisión de elegir el menor espesor por cuestiones económicas.

4.3.10 Efecto de la variación del espesor del marco lateral en la eficiencia exergética

Se toman valores para el marco lateral dentro del siguiente rango:

Restricción $0.015 < \delta_{ml} < 0.035$

Figura 45 Variación de eficiencia exergética en el tiempo al variar espesor de ML

Para el marco lateral, se incrementa la eficiencia exergética al aumentar el espesor observándose el mismo efecto al incrementar hacia el exterior como el interior.

4.3.11 Efecto de la variación de la distancia entre placa absorbedora y cubierta superior en la eficiencia exergética

Se toman valores dentro del siguiente rango:

Restricción $0.04 < \delta_{pa-cs} < 0.12$

Figura 461 Variación de la eficiencia exergética en el tiempo variando la distancia entre PA y CS

Para esta geometría se tiene poco impacto en la eficiencia exergética.

4.3.12 Efecto de la variación de la longitud del colector en la eficiencia exergética

Se toman valores dentro del siguiente rango:

Restricción 0.5 < Long < 1.5

Dentro de este intervalo se obtiene el comportamiento de la eficiencia exergética presentado en la figura.

Figura 472 Variación de la eficiencia exergética en el tiempo para diferentes longitudes del colector

Mientras más aumenta la longitud del colector la eficiencia exergética tiende a aumentar. La temperatura del fluido de trabajo es la que aumenta. Al aumentar la longitud del colector aumentamos el área de la placa absorbedora, por lo tanto, el área de captación.

4.3.13 Efecto de la variación del ancho del colector en la eficiencia exergética

Se toman valores dentro de la siguiente restricción:

Restricción 0.5 < Anch < 1.5

Dentro de este intervalo se obtiene el comportamiento de la eficiencia exergética.

Figura 483 Variación de la eficiencia exergética en el tiempo para diferentes anchuras del colector

Se puede observar en la figura 73 que mientras más aumenta el ancho del colector la eficiencia exergética tiende a aumentar.

4.3.14 Efecto de la variación de la distancia entre el aislante y la placa absorbedora en la eficiencia exergética

La restricción para la distancia entre aislante y placa absorbedora es la siguiente

Restricción $0.25 < \delta_{ai-pa} < 0.1$

Dentro de este intervalo se obtiene el comportamiento de la eficiencia exergética.

Figura 494 Variación de la eficiencia exergética en el tiempo para diferentes distancias entre AI y PA

Se tiene un incremento en la eficiencia exergética al reducir la distancia entre el aislante y la placa absorbedora.

4.4 Efecto de diferentes combinaciones de parámetros geométricos y tipos de materiales

usados en la eficiencia de segunda ley

A partir de la parametrización se realizó el análisis de las configuraciones óptimas que se pueden obtener.

Figura 505 Comparación entre modelos

El modelo I tiene en cuenta los valores de los parámetros geométricos y los materiales utilizados en el prototipo construido. El Modelo II se constituye por los valores óptimos de los parámetros geométricos con valores más altos de eficiencia obtenido en el análisis paramétrico. En el Modelo III, además de los parámetros geométricos óptimos, también se incluyeron los materiales utilizados con mayor eficiencia. Se observa que efectivamente se logra un incremento de eficiencia en el modelo II y un incremento mayor en el modelo III. Destacando que en el modelo III se logra un cambio en el comportamiento al mantenerse casi constante por mayor tiempo.

4.5 Efecto del caudal másico

Se realizó el análisis de la variación del flujo másico para saber la influencia sobre la temperatura de salida del fluido de trabajo, la exergía de salida y la eficiencia exergética.

Figura 516 Variación del flujo másico

La variación se realizó de 0.0017 kg/s a 0.007 kg/s. Se obtuvo como resultado que al aumentar el flujo la temperatura de salida del fluido de trabajo disminuye provocando así la reducción de la exergía de salida y por lo tanto la reducción de la eficiencia exergética.

4.6 Efecto de la variación de la configuración de la placa absorbedora

Edición del código para implementar las correlaciones en el modelo.

Los materiales y las dimensiones del colector utilizado para evaluar las configuraciones, fueron los siguientes:

Elemento	Material	Espesor (m)				
Cubierta	Vidrio normal	0.004				
Placa absorbedora	Lamina lisa negra pintada de negro	0.001				
Marco lateral	Madera	0.05				
Aislante	Unicel	0.025				
Placa base	Madera	0.025				
Recinto		0.005				
Canal del fluido		0.04				
*Longitud 1.34 m y Ancho 0.26 m.						

Tabla 21 Datos del colector para evaluar rugosidades

Las correlaciones del número de Nusselt impactan el coeficiente de transferencia de calor por convección entre la placa absorbedora y el fluido de trabajo.

$$h_{c,ap-f} = \frac{kNu_{ap-f}}{D_h}$$
{ 207 } Coeficiente para correlaciones Nu

Para el caso del factor de fricción las correlaciones se introducen en la caída de presión presente en la eficiencia exergética.

$$\Delta P = \frac{f_r L\dot{m}^2 (Anch_{pa} + \delta_{ai-pa})}{\rho_{ft} (Anch_{pa} \delta_{ai-pa})^3}$$
[{] 208 } Caída de presión para FF

Los cálculos numéricos para obtener la caracterización térmica de los componentes del colector solar de aire se realizaron a través de un código desarrollado en MATLAB.

Las seis ecuaciones acopladas de primer orden (ecuaciones 1 a 6) se resolvieron implementando el método numérico RKF con determinadas condiciones de funcionamiento (Ambientales, parámetros geométricos, propiedades de los materiales y condiciones iniciales y de frontera) siguiendo el proceso iterativo presentado en la figura 10. Se obtiene la caracterización térmica de los elementos y la eficiencia exergética, para cada configuración.

Variación de la configuración de la placa absorbedora.

El análisis de exergía se realizó para cinco valores distintos de flujo másico: 0.003, 0.00775, 0.0125, 0.01725 y 0.022. Para el flujo másico con valor de 0.003 la configuración que presenta la mayor eficiencia exergética es la de obstáculos no perforados en forma de delta.

Figura 52 Comparación de eficiencia exergética para diferentes configuraciones con un valor de 0.003 para el flujo másico

Se observa que el obstáculo tiene un impacto significativo en el rendimiento exergético del sistema. La eficiencia exergética máxima de un colector liso alcanza un 3.05%, mientras se mejora hasta un 10.62% en presencia de los obstáculos en forma de delta, mostrando una mejora del 248.2% que es 3.48 veces más de lo obtenido en un colector liso.

El valor máximo de eficiencia exergética obtenido para todas las configuraciones se resume en la tabla.

Configuración	η_{ex} [%]	Configuración		
Protuberancias	0.83	Rugosidad de las costillas en forma de S		
Nervadura en forma de V múltiple con un espacio	7.58	Rugosidad de un cuarto de círculo		
Rugosidad en forma de hoyuelo	2.95	Rugosidades de sección rectangular	6.015	
Deflectores perforados en forma de V	8.99	Configuración híbrida de nervadura de arco roto y	3.84	
		nervaduras escalonadas		
Obstáculo no perforado en forma de delta	10.62	WVG con un agujero semicircular	0.83	
Obstáculo perforado en forma de delta	5.90	nervaduras circulares	2.49	
Rugosidad de forma de arco múltiple	2.72	Perfiles de curvas cónicas	3.83	
Rugosidades de arco rotas	3.53	Perfil inverso NACA 0040	7.25	
Generador de vórtice de ala de forma delta DWE1	4.01	Perfil inverso discreto NACA 0040	7.53	
Generador de vórtice de ala de forma delta DWE2	3.95	rugosidad discreta en V hacia abajo	4.71	
Generador de vórtice de ala de forma delta DWA1	9.69	Aspereza de los granos de la rugosidad del metal	1.72	
Generador de vórtice de ala de forma delta DWA2	8.98	Rugosidad con ranuras achaflanadas	4.43	
Generador de vórtice de aleta de tipo rectangular y	8.83	Salientes orientados en forma de arco como elemento de	4.99	
trapezoidal RWVG		rugosidad		
Generador de vórtice de aleta de tipo rectangular y	8.88	Rugosidad de nervadura torcida	3.43	
trapezoidal TWVG				

Tabla 22 Valor máximo de eficiencia exergética alcanzado para cada configuración

Generador de vórtice de aleta de tipo rectangular y	9.32	rugosidad tipo winglet	3.99
trapezoidal PRWVG			
Generador de vórtice de aleta de tipo rectangular y	9.15	Rugosidad con nervadura de arco	3.25
trapezoidal PTWVG			
protuberancia cónica	3.93		

Para el flujo másico con valor de 0.00775 la configuración que presenta la mayor eficiencia exergética es la de generador de vórtice de ala de forma delta (DW-A Rp=1)

Figura 53 Comparación de eficiencia exergética para diferentes configuraciones con un valor de 0.00775 para el flujo másico

La eficiencia exergética máxima de un colector liso alcanza un 2.85%, mientras se mejora hasta un 8.64% en presencia de los generadores de vórtice de ala en forma delta, mostrando una mejora del 203.16% que es 3.03 veces más de lo obtenido en un colector liso.

El valor máximo de eficiencia exergética obtenido para todas las configuraciones se resume en la tabla.

Tabla 23 Valor máximo de eficiencia exergética alcanzado	para cada configuración con un flujo másico de 0.00775
--	--

Configuración	η _{ex} [%]	Configuración	η _{ex} [%]
Protuberancias	0.57	Rugosidad de las costillas en forma de S	4.36
Nervadura en forma de V múltiple con un espacio	7.79	Rugosidad de un cuarto de círculo	5.56
Rugosidad en forma de hoyuelo	3.91	Rugosidades de sección rectangular	6.08
Deflectores perforados en forma de V	8.43	Configuración híbrida de nervadura de arco roto y nervaduras escalonadas	4.80
Obstáculo no perforado en forma de delta	8.54	WVG con un agujero semicircular	0.56
Obstáculo perforado en forma de delta	4.88	nervaduras circulares	2.56
Rugosidad de forma de arco múltiple	4.13	Perfiles de curvas cónicas	4.28

Rugosidades de arco rotas	4.34	Perfil inverso NACA 0040	6.19
Generador de vórtice de ala de forma delta DWE1	4.12	Perfil inverso discreto NACA 0040	6.35
Generador de vórtice de ala de forma delta DWE2	4.06	rugosidad discreta en V hacia abajo	5.20
Generador de vórtice de ala de forma delta DWA1	8.64	Aspereza de los granos de la rugosidad del metal	2.31
Generador de vórtice de ala de forma delta DWA2	8.15	Rugosidad con ranuras achaflanadas	5.01
Generador de vórtice de aleta de tipo rectangular y	7.88	Salientes orientados en forma de arco como elemento de	5.86
trapezoidal RWVG		rugosidad	
Generador de vórtice de aleta de tipo rectangular y	7.95	Rugosidad de nervadura torcida	4.24
trapezoidal TWVG			
Generador de vórtice de aleta de tipo rectangular y	8.22	rugosidad tipo winglet	4.62
trapezoidal PRWVG			
Generador de vórtice de aleta de tipo rectangular y	8.16	Rugosidad con nervadura de arco	5.06
trapezoidal PTWVG			
protuberancia cónica	4.63		

Para el flujo másico con valor de 0.0125 la configuración que presenta la mayor eficiencia exergética es la de deflectores perforados en forma de V.

La eficiencia exergética máxima de un colector liso alcanza un 2.80%, mientras se mejora hasta un 7.11% en presencia de los deflectores perforados en forma de V, mostrando una mejora del 153.93% que es 2.54 veces más de lo obtenido en un colector liso.

El valor máximo de eficiencia exergética obtenido para todas las configuraciones se resume en la tabla.

Tabla 24 Valor máximo de eficiencia exergética alcanzado para cada configuración con flujo másico de 0.0125

Configuración	η_{ex} [%]	Configuración	η_{ex} [%]

Protuberancias	0.52	Rugosidad de las costillas en forma de S		
Nervadura en forma de V múltiple con un espacio	6.85	Rugosidad de un cuarto de círculo	5.18	
Rugosidad en forma de hoyuelo	4.13	Rugosidades de sección rectangular	5.47	
Deflectores perforados en forma de V		Configuración híbrida de nervadura de arco roto y	4.80	
		nervaduras escalonadas		
Obstáculo no perforado en forma de delta	6.70	WVG con un agujero semicircular	0.51	
Obstáculo perforado en forma de delta	3.96	nervaduras circulares	2.52	
Rugosidad de forma de arco múltiple	4.58	Perfiles de curvas cónicas	4.17	
Rugosidades de arco rotas	4.36	Perfil inverso NACA 0040	5.21	
Generador de vórtice de ala de forma delta DWE1	3.85	Perfil inverso discreto NACA 0040	5.31	
Generador de vórtice de ala de forma delta DWE2	3.81	rugosidad discreta en V hacia abajo	4.92	
Generador de vórtice de ala de forma delta DWA1	6.83	83 Aspereza de los granos de la rugosidad del metal		
Generador de vórtice de ala de forma delta DWA2	6.60) Rugosidad con ranuras achaflanadas		
Generador de vórtice de aleta de tipo rectangular y	6.01	Salientes orientados en forma de arco como elemento de	5.59	
trapezoidal RWVG		rugosidad		
Generador de vórtice de aleta de tipo rectangular y	6.13	Rugosidad de nervadura torcida	4.31	
trapezoidal TWVG				
Generador de vórtice de aleta de tipo rectangular y	6.08	rugosidad tipo winglet	4.52	
trapezoidal PRWVG				
Generador de vórtice de aleta de tipo rectangular y	6.33	Rugosidad con nervadura de arco	5.44	
trapezoidal PTWVG				
protuberancia cónica	4.54			

Para el flujo másico con valor de 0.01725 la configuración que presenta la mayor eficiencia exergética es la de deflectores perforados en forma de V.

Figura 55 Comparación de eficiencia exergética para diferentes configuraciones con un valor de 0.01725 para el flujo másico

La eficiencia exergética máxima de un colector liso alcanza un 2.64%, mientras se mejora hasta un 5.94% en presencia de los deflectores perforados en forma de V, mostrando una mejora del 125% que es 2.25 veces más de lo obtenido en un colector liso.

Configuración		Configuración	η_{ex} [%]
Protuberancias	0.46	Rugosidad de las costillas en forma de S	4.58
Nervadura en forma de V múltiple con un espacio	5.93	Rugosidad de un cuarto de círculo	4.67
Rugosidad en forma de hoyuelo	4.01	Rugosidades de sección rectangular	4.84
Deflectores perforados en forma de V	5.94	Configuración híbrida de nervadura de arco roto y nervaduras escalonadas	4.47
Obstáculo no perforado en forma de delta	5.20	WVG con un agujero semicircular	0.44
Obstáculo perforado en forma de delta	3.04	nervaduras circulares	2.37
Rugosidad de forma de arco múltiple	4.49	Perfiles de curvas cónicas	3.87
Rugosidades de arco rotas	4.08	Perfil inverso NACA 0040	4.46
Generador de vórtice de ala de forma delta DWE1		Perfil inverso discreto NACA 0040	4.53
Generador de vórtice de ala de forma delta DWE2		rugosidad discreta en V hacia abajo	4.48
Generador de vórtice de ala de forma delta DWA1		Aspereza de los granos de la rugosidad del metal	2.87
Generador de vórtice de ala de forma delta DWA2	4.99	Rugosidad con ranuras achaflanadas	4.41
Generador de vórtice de aleta de tipo rectangular y trapezoidal RWVG	3.74	Salientes orientados en forma de arco como elemento de rugosidad	5.09
Generador de vórtice de aleta de tipo rectangular y trapezoidal TWVG	3.97	Rugosidad de nervadura torcida	4.09
Generador de vórtice de aleta de tipo rectangular y trapezoidal PRWVG	3.41	rugosidad tipo winglet	4.20
Generador de vórtice de aleta de tipo rectangular y trapezoidal PTWVG	4.24	Rugosidad con nervadura de arco	5.22
protuberancia cónica	4.20		

El valor máximo de eficiencia exergética obtenido para todas las configuraciones se resume en la tabla.

Tabla 25 Valor máximo de eficiencia exergética alcanzado para cada configuración con flujo másico de 0.01725

Para el flujo másico con valor de 0.022 la configuración que presenta la mayor eficiencia exergética es la de nervaduras en forma de V múltiple con un espacio.

Figura 56 Comparación de eficiencia exergética para diferentes configuraciones con un valor de 0.022 para el flujo másico

La eficiencia exergética máxima de un colector liso alcanza un 2.47%, mientras se mejora hasta un 5.14% en presencia de las nervaduras en forma de V múltiple con espacio, mostrando una mejora del 108.1% que es 2.08 veces más de lo obtenido en un colector liso.

El valor máximo de eficiencia exergética obtenido para todas las configuraciones se resume en la tabla.

Tabla 26 Valor máximo de eficiencia exergética alcanzado para cada configuración con flujo másico de 0.022

Configuración	η _{ex} [%]	Configuración	η _{ex} [%]
Protuberancias	0.39	Rugosidad de las costillas en forma de S	4.28
Nervadura en forma de V múltiple con un espacio	5.14	Rugosidad de un cuarto de círculo	4.19
Rugosidad en forma de hoyuelo	3.77	Rugosidades de sección rectangular	4.27
Deflectores perforados en forma de V	4.90	Configuración híbrida de nervadura de arco roto y nervaduras escalonadas	4.05
Obstáculo no perforado en forma de delta	3.78	WVG con un agujero semicircular	0.36
Obstáculo perforado en forma de delta	2.01	nervaduras circulares	2.19
Rugosidad de forma de arco múltiple	4.19	Perfiles de curvas cónicas	3.56
Rugosidades de arco rotas	3.70	Perfil inverso NACA 0040	3.89
Generador de vórtice de ala de forma delta DWE1	3.04	Perfil inverso discreto NACA 0040	3.95
Generador de vórtice de ala de forma delta DWE2	3.03	rugosidad discreta en V hacia abajo	4.05
Generador de vórtice de ala de forma delta DWA1	2.70	Aspereza de los granos de la rugosidad del metal	2.87
Generador de vórtice de ala de forma delta DWA2	3.16	Rugosidad con ranuras achaflanadas	3.99
Generador de vórtice de aleta de tipo rectangular y	0.79	Salientes orientados en forma de arco como elemento de	4.59
trapezoidal RWVG		rugosidad	
Generador de vórtice de aleta de tipo rectangular y trapezoidal TWVG	1.21	Rugosidad de nervadura torcida	3.81

Generador de vórtice de aleta de tipo rectangular y	0	rugosidad tipo winglet	3.84
trapezoidal PRWVG			
Generador de vórtice de aleta de tipo rectangular y	1.62	Rugosidad con nervadura de arco	4.82
trapezoidal PTWVG			
protuberancia cónica	3.78		

Para cada configuración se observan tendencias diferentes, en general, disminuyen o presentan un máximo.

Tabla 27 Tendencia de cada correlación al incrementar el flujo másico

Configuración	η_{ex} [%]	η_{ex} [%]	η_{ex} [%]	η _{ex} [%]	η_{ex} [%]	Tendencia
Flujo másico	0.003	0.00775	0.0125	0.01725	0.022	
Protuberancias	0.83	0.57	0.52	0.46	0.39	Disminuye
Nervadura en forma de V múltiple con un espacio	7.58	7.79	6.85	5.93	5.14	Máximo en
						0.00775
Rugosidad en forma de hoyuelo	2.95	3.91	4.13	4.01	3.77	Máximo en 0.0125
Deflectores perforados en forma de V	8.99	8.43	7.11	5.94	4.90	Disminuye
Obstáculo no perforado en forma de delta	10.62	8.54	6.70	5.20	3.78	Disminuye
Obstáculo perforado en forma de delta	5.90	4.88	3.96	3.04	2.01	Disminuye
Rugosidad de forma de arco múltiple	2.72	4.13	4.58	4.49	4.19	Máximo en 0.0125
Rugosidades de arco rotas	3.53	4.34	4.36	4.08	3.70	Máximo en 0.0125
Generador de vórtice de ala de forma delta DWE1	4.01	4.12	3.85	3.46	3.04	Máximo en
						0.00775
Generador de vórtice de ala de forma delta DWE2	3.95	4.06	3.81	3.43	3.03	Máximo en
						0.00775
Generador de vórtice de ala de forma delta DWA1	9.69	8.64	6.83	4.93	2.70	Disminuye
Generador de vórtice de ala de forma delta DWA2	8.98	8.15	6.60	4.99	3.16	Disminuye
Generador de vórtice de aleta de tipo rectangular y trapezoidal	8.83	7.88	6.01	3.74	0.79	Disminuye
RWVG						
Generador de vórtice de aleta de tipo rectangular y trapezoidal	8.88	7.95	6.13	3.97	1.21	Disminuye
TWVG						
Generador de vórtice de aleta de tipo rectangular y trapezoidal	9.32	8.22	6.08	3.41	0	Disminuye
PRWVG						
Generador de vórtice de aleta de tipo rectangular y trapezoidal	9.15	8.16	6.33	4.24	1.62	Disminuye
PTWVG						
protuberancia cónica	3.93	4.63	4.54	4.20	3.78	Máximo en
						0.00775
Rugosidad de las costillas en forma de S	3.00	4.36	4.71	4.58	4.28	Máximo 0.0125
Rugosidad de un cuarto de círculo	5.14	5.56	5.18	4.67	4.19	Máximo en
						0.00775
Rugosidades de sección rectangular	6.015	6.08	5.47	4.84	4.27	Máximo en
						0.00775
Configuración híbrida de nervadura de arco roto y nervaduras	3.84	4.80	4.80	4.47	4.05	Máximo en
escalonadas						0.00775
WVG con un agujero semicircular	0.83	0.56	0.51	0.44	0.36	Disminuye

nervaduras circulares	2.49	2.56	2.52	2.37	2.19	Máximo en 0.00775
Perfiles de curvas cónicas	3.83	4.28	4.17	3.87	3.56	Máximo en 0.00775
Perfil inverso NACA 0040	7.25	6.19	5.21	4.46	3.89	Disminuye
Perfil inverso discreto NACA 0040	7.53	6.35	5.31	4.53	3.95	Disminuye
rugosidad discreta en V hacia abajo	4.71	5.20	4.92	4.48	4.05	Máximo en 0.00775
Aspereza de los granos de la rugosidad del metal	1.72	2.31	2.72	2.87	2.87	Incrementa
Rugosidad con ranuras achaflanadas	4.43	5.01	4.80	4.41	3.99	Máximo en 0.00775
Salientes orientados en forma de arco como elemento de rugosidad	4.99	5.86	5.59	5.09	4.59	Máximo en 0.00775
Rugosidad de nervadura torcida	3.43	4.24	4.31	4.09	3.81	Máximo en 0.0125
rugosidad tipo winglet	3.99	4.62	4.52	4.20	3.84	Máximo en 0.00775
Rugosidad con nervadura de arco	3.25	5.06	5.44	5.22	4.82	Máximo en 0.0125

En resumen:

Tahla 28	Datos	obtenidos	nara a	liforontos	valores	do flu	io másico
1 110111 20	Duios	obientuos	para a	ujerenies	valores	ue jiuj	o musico

Flujo másico	Ef Ex	Configuración	Ef Ex	Mejora	Mejora
	Liso		Config	%	
0.003	3.05%	Obstáculos no perforados en forma de delta	10.62 %	248.2	3.48 veces
0.00775	2.85%	Generador de vórtice de ala en de forma delta (DW-A Rp=1)	8.64 %	203.16	3.03 veces
0.0125	2.80%	Deflectores perforados en forma de V	7.11 %	153.93	2.54 veces
0.01725	2.64%	Deflectores perforados en forma de V	5.94 %	125	2.25 veces
0.022	2.47%	Nervaduras en forma de V múltiple con un espacio	5.14 %	108.1	2.08 eces

4.7 Optimización de algoritmo genético

Para nuestro algoritmo genético se consideraron nueve variables como parámetros de entrada. Definimos como función objetivo la eficiencia exergética la cual buscamos maximizar.

Tabla 29	Rango	de	valores	de	variables
----------	-------	----	---------	----	-----------

Elementos del colector	Valores
Cubierta superior	De 0.001 a 0.005
Placa absorbedora	De 0.0005 a 0.002
Aislante	De 0.005 a 0.015
Placa base	De 0.015 a 0.035
Marco lateral	De 0.015 a 0.036
Distancia entre placa absorbedora y cubierta superior	De 0.04 a 0.12

Longitud	De 0.5 a 1.5
Ancho	De 0.5 a 1.5
Distancia entre aislante y placa absorbedora	De 0.1 a 0.25

Si variamos las nueve variables elegidas al mismo tiempo de manera que observemos a que valor converge cada variable cuando la eficiencia exergética tiende a su valor máximo, podríamos saber cuál es la combinación que nos brinda la mayor eficiencia exergética. Para esto implementamos un algoritmo genético. En nuestro análisis se ejecutó un algoritmo genético con 25 cromosomas y 150 generaciones. Las probabilidades de cruce y mutación son de 0.8 y 0.05 respectivamente en todo momento.

Al finalizar el algoritmo genético se obtuvo el comportamiento siguiente:

Figura 82 Convergencia de variables

En resumen, en la figura anterior se observa en cada generación el valor de cada variable correspondiente a la configuración en dicha generación que presentó la mayor eficiencia exergética. Los valores obtenidos para la configuración óptima son los siguientes:

Tabla 3) Resu	ltados	óptimos
---------	--------	--------	---------

Elementos del colector	Valores
Cubierta superior	0.001
Placa absorbedora	0.0005

Aislante	0.015
Placa base	0.035
Marco lateral	0.036
Distancia entre placa absorbedora y cubierta superior	0.04
Longitud	1.5
Ancho	1
Distancia entre aislante y placa absorbedora	0.1

Se observa como las variables convergen hacia los valores obtenidos en el modelo II de la figura 12. Comprobando así la efectividad del algoritmo genético para la optimización de nuestro colector modelo.

4.8 Conclusiones

El modelo matemático desarrollo para colectores de placas planas para calentamiento de aire e implementando en MATLAB es capaz de predecir las temperaturas de cualquier elemento de un colector con esta misma configuración. Las diferencias entre las temperaturas simuladas y los resultados experimentales variaron entre 1.3 a 4.4 indicado por el RSME, considerando que el RMSE cuantifica cuán diferente es un conjunto de valores, cuanto más pequeño es un valor RMSE más cercanos son los valores predichos y observados. Concluyendo que el modelo obtenido tiene un margen de error bajo. Por lo tanto, es un modelo útil para poder realizar las variaciones correspondientes con el objetivo de optimizarlo.

De los resultados obtenidos, al variar los materiales se obtuvo que en los marcos laterales es importante elegir el aislante correcto. Y entre las variaciones de la geometría, el elemento que tiene mayor influencia es la placa absorbedora. Además, los resultados nos ayudan a tomar una decisión para cada elemento del colector. De la parametrización realizada, los modelos óptimos que se analizaron presentaron, como se esperaba, un incremento en la eficiencia exergética. En el análisis del flujo másico se obtuvo que incrementar el flujo hace que la eficiencia tenga impacto negativo.

El método con algoritmo genético desarrollado para colectores de placas planas para calentamiento de aire e implementando en MATLAB se basa en números enteros considerando las mismas variables analizadas en la parametrización formando así una población conformada por nueve

variables, obteniendo un resultado que coincide con los resultados obtenidos en la parametrización. Comprobando así, que el AG es útil para obtener la configuración óptima que entrega la eficiencia exergética máxima dentro del rango de valores definido y dando la opción de variar estos rangos.

Para el caso de las configuraciones, el análisis se realizó seleccionando treinta y tres configuraciones diferentes, de las cuales sus respectivas correlaciones y los valores óptimos de sus parámetros fueron utilizados en un modelo matemático de colector solar implementado en MATLAB en el cual se varió el valor del flujo másico observando el comportamiento de las configuraciones para cinco valores diferentes. El flujo es el parámetro que indicará que tipo de configuración se debe implementar, pues se observó que para diferentes valores de flujo es un diseño de configuración diferente el que otorga la mayor eficiencia exergética. Aunque se observan diferentes conductas en las diferentes configuraciones, en la mayoría de ellas al incrementar el flujo másico se obtiene una disminución en la eficiencia exergética.

4.9 Bibliografía

(s.f.).

Dincer, I., & Rosen, M. A. (2017). Optimization of Energy Systems. Canada: John Wiley & Sons.